Magnetic evidence for a partially differentiated carbonaceous chondrite parent body

Laurent Carpozeno1, Benjamin P. Weiss2, Linda T. Elkins-Tanton2, David L. Shuster3, Denton Ebel3, and Jérôme Gattacceca*4

1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; 2Berkeley Geochronology Center, Berkeley, CA 94709; 3Department of Earth and Planetary Science, University of California, Berkeley, CA 94720; 4Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024; and 5Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Centre National de la Recherche Scientifique, Université Aix-Marseille 3, F-13545 Aix-en-Provence, France

Edited by David J. Stevenson, California Institute of Technology, Pasadena, CA, and approved February 22, 2011 (received for review November 23, 2010)

The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Resolution of this conundrum requires a determination of the age and timescale over which Allende acquired its magnetization. Here, we report that Allende’s magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a > ~ 20 μT field up to approximately 9–10 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos, suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core.

Allende is an accretionary breccia from near the surface of the CV parent planetesimal (1). Following accretion, Allende experienced minor aqueous alteration and moderate thermal metamorphism and metasomatism (2) but has remained essentially unshocked (<5 GPa) (3). Its major ferromagnetic minerals are pyrrhotite, magnetite, and awaruite, with an average pseudo-single-domain crystal size (4–8). We conducted alternating-field (AF) and thermal demagnetization, rock magnetic, and paleointensity measurements on 71 mutually oriented bulk subsamples of Allende sample AMNH5056 (approximately 10-cm diameter and 8-mm thick slab surrounded by fusion crust). Of these, 51 subsamples were taken from the interior of the meteorite (>1 mm from fusion crust), whereas 20 contained some fusion crust.

The differing magnetization directions of interior and fusion-crusted samples demonstrate that >95% of the natural remanent magnetization (NRM) in interior samples is preterrestrial (Figs. 1 and 2 and SI Appendix). AF demagnetization revealed that the interior samples have at least two components: a weak, low-coercivity, nonunidirectional component blocked up to 5 or 10 mT and a high-coercivity (HC) component blocked from approximately 10 to >290 mT (Fig. 1). In agreement with previous studies (4, 9, 10), the HC magnetization is unidirectionally oriented throughout the meteorite’s interior (Fig. 2 and SI Appendix, Table S1). Thermal demagnetization (Figs. 1 and 2 and SI Appendix) indicates that interior samples have a low-temperature (LT) component blocked up to approximately 190°C, a dominant middle-temperature (MT) component blocked between approximately 190–300°C and oriented similarly to the HC component isolated by AF demagnetization, and a very weak nonunidirectional high-temperature (HT) magnetization blocked up to approximately 400–600°C. The MT and LT components are each unidirectional throughout the meteorite and collectively constitute the majority (approximately 90%) of the interior NRM. Similar results were obtained by previous investigators (4, 5, 10). The HC component (Fig. 1) and its association with sulfide-rich separates demonstrates that it is carried predominantly by pyrrhotite (5, 11) (see SI Appendix). Blocking temperature relations and our magnetic viscosity experiments indicate that whereas the MT component should have been thermally stable at ambient temperatures over the last 4.5 billion years, the LT component may be a viscous remanent magnetization acquired in a strong (approximately 500 μT) crustal or fine-scale magnetostatic interaction field on the CV parent body (see SI Appendix). It is not clear whether the HT remanence is part of the meteorite’s NRM or is instead simply an artifact of the laboratory demagnetization process (see SI Appendix).

The unidirectionality of the MT component requires that it was acquired following accretion of the CV parent body. This is consistent with the fact that the main NRM carriers (pyrrhotite, magnetite, and awaruite) are thought to be predominantly solids alteration phases produced during hydrous alteration and thermal metamorphism on the parent body (2) (see SI Appendix). However, it has previously been unclear exactly how the MT component originated because its upper blocking temperature limit is close to pyrrhotite’s ~320°C Curie point. There have been differing conclusions (4, 10, 11) about whether it is a crystallization remanent magnetization (CRM) from low-temperature sulfidization or a partial thermoremanent magnetization (pTRM) acquired during metasomatism of the parent body. Our high-resolution thermal demagnetization schedule and laboratory TRM experiments strongly favor a 290°C pTRM (see SI Appendix). Additional strong evidence in favor of a pTRM or thermochemical remanence (TCRM) origin is provided by a variety of recently published petrologic constraints that indicate metamorphism to peak temperatures of approximately 250 to <600°C (see SI Appendix), essentially indistinguishable from the peak blocking temperature of the MT component.

Regardless of whether the MT component is a pTRM or TCRM, its unidirectional orientation—now observed by four authors declare no conflict of interest.

Supporting Online Material


Editorial support: Paul S. Wirth.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1Present address: Équipe de paléomagnétisme, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, F-75005 Paris, France.

2To whom correspondence should be addressed. E-mail: bpweiss@mit.edu.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1017165108/-/DCSupplemental.
different laboratories (4, 9, 10) — combined with the lack of significant NRM blocked above 290 °C strongly argues against exotic scenarios like origin in a near-zero background field via magnetostatic interactions (which require preexisting strong NRM to produce such a directionally uniform component). We conducted paleointensity experiments using both Thellier–Thellier and AF-based (12) methods in order to obtain an order-of-magnitude estimate of the paleofields that produced the MT component (see SI Appendix). Our results indicate that it formed in fields of order 60 μT with a minimum value of 20 μT (Fig. 3).

Fig. 1. AF and thermal demagnetization of Allende sample AMNH5056. Shown is a two-dimensional projection of the endpoint of the NRM vector during AF demagnetization. Closed and open symbols represent end points of magnetization projected onto horizontal (N-S-E-W) and vertical (U-D-E-W) planes, respectively. Peak fields for selected AF steps and peak temperatures for selected thermal steps are shown. (A and B) AF demagnetization of interior subsamples 4.21 and 4.22 reveals a dominantly single-component HC component (gray arrows). (C and D) Thermal demagnetization of interior subsamples 9.12 and 9.16 confirms that nearly all (>95%) of the remanence is composed of an LT component (blocked up to 190 °C; yellow arrows) and an MT component (blocked from 190–290 °C; orange arrows). Insets show the HT demagnetization steps that characterize the scattered HT remanence. (E) Thermal demagnetization of fusion-crusted sample 9.17. (F) AF demagnetization of fusion-crusted sample 8.09.

Fig. 2. Equal area plot showing directions of primary magnetization components of Allende subsamples from the interior (circle and triangles) (A) and fusion-crusted exterior (diamonds) (B). Solid symbols, lower hemisphere; open symbols, upper hemisphere. This plot is oriented in the same way as Fig. 1, with inclination = 90° oriented out of the page (perpendicular to the slab saw cut plane) and declination = 0° oriented toward the top of the page. Sample data ellipsoids are defined as maximum angular deviations associated with the least-squares fits. Stars and their ellipsoids represent the average directions and associated 95% confidence intervals (see SI Appendix, Table S1). Samples represented by triangles were only thermally demagnetized to 320 or 330 °C; the directions shown for these samples are the directions at this temperature (rather than a least-squares fit).

Fig. 3. Summary of paleointensities obtained for Allende. Each vertical cluster of points is derived from a single subsample in our study: circles, thermally calibrated anhysteretic remanent magnetization (ARM) paleointensities; squares, thermally calibrated IRM paleointensities; triangles, Thellier–Thellier paleointensities. Colors correspond to ARM bias fields of 50 μT (light blue), 200 μT (midblue), and 600 μT (dark blue), IRM (red) and REM (purple), and LT (yellow) and MT (orange) paleointensities. Mean paleointensities from our ARM and IRM experiments (thermally calibrated from our measurements of ARM/TRM and IRM/TRM) are given by blue and purple lines, respectively. Mean paleointensities from our Thellier–Thellier experiments for the LT and MT components are given by the yellow and orange lines, respectively. For comparison, also shown in solid red and black lines are the mean previously measured paleointensities from Thellier–Thellier and AF (e.g., REM, REMc, ARM) methods, respectively (4–6, 9, 11, 25, 28, 29). REM and REMc are variants of the IRM paleointensity method (see ref. 6). We thermally calibrated the latter paleointensities also using our measurements of TRM/ARM and TRM/IRM. Shown for comparison are the surface fields of the Earth, the solar wind field 1 astronomical unit (AU) from the Sun, the galactic field, the inferred paleofields of a T Tauri short-lived flare at 0.2 AU, and surface fields inferred for the angrite parent body (12).
and SI Appendix). These strong paleointensities stringently constrain the origin and nature of the possible paleofield.

Several different geochronometers constrain the timing and duration of the magnetization acquisition. Pb/Pb (13) and Al/Mg (14) chronometry indicate that chondrules in CV chondrites formed over a period starting possibly within 0.2 Ma of calcium aluminum inclusion (CAI) formation and lasting for somewhere between 1.2–3 Ma (with most chondrules seeming to have formed approximately 1.7 Ma after CAIs) (see SI Appendix). Mn/Cr ages of secondary fayalite formed during aqueous alteration of six CV3 chondrites are approximately 5–8 Ma after CAIs (15) (see SI Appendix). Because aqueous alteration ended before or coincidently with thermal metamorphism (16), the MT magnetization in Allende was acquired at or after these times. Most importantly, I/Xe ages of Allende CAIs (17) are younger than I/Xe ages of dark inclusions, refractory inclusions, and chondrules, and up to 9–10 Ma younger than the formation of CAIs (18). Assuming the I/Xe system records thermal disturbances, our I/Xe thermochronological modeling (Fig. 4 and SI Appendix, Fig. S13) indicates that elevated thermal conditions (mean temperature of approximately 400 °C) lasted for several Ma ending at approximately 4,559 Ma. Such prolonged heating and cooling is consistent with a variety of other datasets. For example, the compositions of metal, sulfide, and oxide phases in Allende indicate prograde metamorphism at approximately 500 °C for >10^1–10^2 yr (19).

Because chondrite parent bodies are assumed to be undifferentiated (20–23), the possibility of a core dynamo (24) has been discounted (6, 25–29) in support of early solar system external field sources. These ages indicate that the NRM in Allende is likely too young to have been produced by postulated early external field sources like the T Tauri Sun or the magnetorotational instability in the protoplanetary disk (30). Furthermore, the long (at least several Ma) duration of Allende metamorphism also would make it difficult for such field sources to produce a unidirectional magnetization in the spinning, orbiting CV parent body. Such a long timescale also precludes thermoremanent records of impact-generated fields which should last <1 d even

![Graphs and diagrams](ImageURL)
for the largest impactors (31). Note that even if Allende had an LT (<25°C) CRM instead of TRM, the timescales of aqueous alteration [estimated to be approximately 1–10⁵ y (32)] were likely still too long for recording these external field sources. Finally, the low ratio of NRM to saturation isothermal remanent magnetization (IRM) precludes nebular lightning as a field source.

Allende’s paleointensities (Fig. 3) are in the range expected for core dynamos in early planetesimals (12) and other large bodies. Hf/W chronometry indicates that metallic cores formed in planetesimals prior to the final assembly of chondrite parent bodies (33). Recent paleomagnetic analyses of angrites (12) indicate that dynamos were likely generated in convecting metallic cores lasting for >11 Ma after solar system formation. Because such bodies melted from the inside out, some may preserve an unmelted, relic chondritic surface that could be magnetized during metamorphism in the presence of a core dynamo. A simple interpretation of Allende’s paleomagnetic record is therefore that the CV parent planetesimal is such a partially differentiated object. Therefore, despite widespread practice (e.g., ref. 26), the LT magnetization in Allende cannot be used to constrain the intensity of early protoplanetary disk fields. The HT magnetization might be a precreational record of such fields as suggested by ref. 26, but more analyses are required to verify this possibility (see SI Appendix).

Planetesimals apparently evolved into a diversity of differentiated end states, from unmelted primitive bodies, to partially molten objects with primitive crusts, to fully melted objects. There should perhaps be extant samples derived from the once-hot interior of the CV parent body: Although oxygen isotope and other geochemical data clearly rule out the hypothesis of a single melt from the inside out, some may preserve an unmelted, relic chondritic surface that could be magnetized during metamorphism.
