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ABSTRACT. We analyze 8 years of precise radial velocity measurements from the Keck Planet Search, char-
acterizing the detection threshold, selection effects, and completeness of the survey. We first carry out a systematic
search for planets, by assessing the false-alarm probability associated with Keplerian orbit fits to the data. This
allows us to understand the detection threshold for each star in terms of the number and time baseline of the
observations, and the underlying “noise” from measurement errors, intrinsic stellar jitter, or additional low-mass
planets. We show that all planets with orbital periods P < 2000 days, velocity amplitudes K > 20 ms�1, and
eccentricities e≲ 0:6 have been announced, and we summarize the candidates at lower amplitudes and longer orbital
periods. For the remaining stars, we calculate upper limits on the velocity amplitude of a companion. For orbital
periods less than the duration of the observations, these are typically 10 ms�1 and increase∝ P 2 for longer periods.
We then use the nondetections to derive completeness corrections at low amplitudes and long orbital periods and
discuss the resulting distribution of minimum mass and orbital period. We give the fraction of stars with a planet as a
function of minimum mass and orbital period and extrapolate to long-period orbits and low planet masses. A power-
law fit for planet masses > 0:3 MJ and periods < 2000 days gives a mass-period distribution dN ¼ CMαP βd ln
Md lnP with α ¼ �0:31� 0:2, β ¼ 0:26� 0:1, and the normalization constant C such that 10.5% of solar
type stars have a planet with mass in the range 0:3–10 MJ and orbital period 2–2000 days. The orbital period
distribution shows an increase in the planet fraction by a factor of ≈5 for orbital periods ≳300 days. Extrapolation
gives 17%–20% of stars having gas giant planets within 20 AU. Finally, we constrain the occurrence rate of planets
orbiting M dwarfs compared to FGK dwarfs, taking into account differences in detectability.

Online material: color figures

1. INTRODUCTION

Precise Doppler velocity surveys of nearby stars have led to
the detection of more than 250 extrasolar planets (e.g., Marcy
et al. 2005a; Butler et al. 2006b). They have minimum masses
from 5 Earth masses (5 M⊕) and up, orbital periods from close
to one day up to several years, and a wide range of eccentricities.
Over 25 multiple planet systems are known, with many other
single planet systems showing a long-term velocity trend likely
indicating a second planet with long orbital period (Fischer et al.
2001). The increasing number of detections allows us to answer
questions about the statistical properties of extrasolar planetary
systems, such as the mass, period, and eccentricity distributions

(Tabachnik & Tremaine 2002; Butler et al. 2003; Fischer et al.
2003; Lineweaver & Grether 2003; Jones et al. 2003; Udry et al.
2003; Gaudi et al. 2005; Ford & Rasio 2006; Jones et al. 2006;
Ribas & Miralda-Escudé 2007), and the incidence of giant pla-
nets as a function of host star metallicity (Fischer & Valenti
2005; Santos et al. 2005) and mass (Butler et al. 2004b; Butler
et al. 2006a; Endl et al. 2006; Johnson et al. 2007).

In this paper, we focus on the frequency of planetary
systems, and the distributions of mass and orbital periods.
The frequency of planets is important for future astrometric
and direct searches (see, e.g., Beuzit et al. 2007). The details
of the mass-orbital period distribution are important because
they contain information about the planet formation process
(Armitage et al. 2002; Ida & Lin 2004a, 2004b, 2005,
2008a, 2008b; Alibert et al. 2005; Rice & Armitage 2005; Kor-
net & Wolf 2006). Figure 1 shows the distribution of planet
masses and orbital periods for 182 planets announced as of
2007 March. Several features of the mass-period distribution
have been discussed in the literature: the “pile-up” at orbital
periods of ≈3 days (the “hot Jupiters”) (e.g., see Gaudi et al.
2005); the paucity of massive planets (M > 1MJ ) in close
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orbits (Udry et al. 2002, 2003; Zucker & Mazeh 2002, 2003);
the deficit of planets at intermediate orbital periods of ∼10 and
100 days, giving a “period valley” in the orbital period distribu-
tion (Jones et al. 2003; Udry et al. 2003; Burkert & Ida 2007);
and a suggestion that the lack of lower-mass planets
(M < 0:75 MJ ) at orbital periods ∼100–2000 days is signifi-
cant and a real feature of the distribution (Udry et al. 2003). It
has also been pointed out that the incidence and mass-period
distribution of planets should depend on the mass of the host
star. In particular, a much lower incidence of Jupiter-mass
planets is expected around M dwarfs in the core accretion
scenario for planet formation (Laughlin et al. 2004; Ida &
Lin 2005; Kennedy & Kenyon 2008, although see Kornet &
Wolf 2006), and observational estimates support this picture
(Butler et al. 2004b; Butler et al. 2006a; Endl et al. 2006;
Johnson et al. 2007).

These interpretations are complicated by the fact that the
mass-period distribution is subject to selection effects at low
masses and long orbital periods. The important observational
quantity is the stellar velocity amplitude induced by the planet,
which for a planet of mass MP is

K ¼ 28:4 m=sffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
�
MP sin i
MJ

��
P

1 yr

��1=3
�
M★

M⊙

��2=3

(1)

where P is the orbital period, e is the eccentricity, M★ is the
mass of the star, and i is the inclination of the orbit. The dotted
lines in Figure 1 show K ¼ 3, 10, and 30 ms�1 for circular
orbits around a solar-mass star. The detectable amplitude
depends on the number and duration of the observations, and
particularly on the Doppler measurement errors and other noise
sources (see Cumming 2004 for a detailed discussion).

Scatter in the measured radial velocity is expected from sta-
tistical and systematic measurement errors, and intrinsic stellar
radial velocity variations or “jitter.” The typical statistical mea-
surement error, which we refer to in this paper as the “Doppler
error” or “Doppler measurement error,” is determined by the
uncertainty in the mean velocity of a large number of spectral
segments. The Doppler errors are typically 3–5 ms�1 in the
data considered here, although Doppler errors as small as
≈1 ms�1 are now routine (Mayor et al. 2003; Butler et al.
2004a). Sources of systematic measurement errors include
imperfect PSF descriptions and deconvolution algorithms and
the characterization of the charge transfer in the spectrometer
CCD (see discussion in Butler et al. 2006a). Stellar jitter is
thought to arise from a combination of surface convective
motions, magnetic activity, and rotation (Saar & Donahue
1997). The amount of jitter depends on stellar properties such
as rotation rate and spectral type, but is typically 1–5 ms�1

for chromospherically quiet stars (Saar, Butler, & Marcy
1998; Santos et al. 2000; Wright 2005). Additional low-mass
planets in a system could provide another source of radial
velocity variability.

These various sources of noise determine the velocity threshold
for detecting planets and vary between observations, different
stars, and different surveys. Interpretation of the mass-period
distribution at low masses requires a careful analysis of these
selection effects. Most work to date has taken a fixed detection
threshold, such as K ¼ 10 ms�1 (e.g., Udry et al. 2003) or a
mass cut well above the masses at which selection effects should
play a role (Lineweaver & Grether 2003). A few detailed
calculations of detection thresholds have been carried out. In
Cumming et al. (1999), we presented an analysis of 11 years
of Doppler measurements of 76 stars as part of the Lick planet
search. However, the conclusions regarding the mass-period
distribution were limited because only six planets were then
known. Endl et al. (2002) present a statistical analysis of the
37-star sample observed by the ESO Coudé Echelle spectro-
meter. Wittenmyer et al. (2006) present limits on companion
mass for 31 stars observed at McDonald Observatory. The
largest study so far is that of Naef et al. (2005), who derive
detection thresholds for 330 stars from the ELODIE Planet
Search and estimate planet occurrence rates.6

In this paper, we analyze 8 years of radial velocity measure-
ments from the Keck survey, consisting of data taken from the
beginning of the survey in 1996 to the time of the HIRES spec-
trometer upgrade in 2004 August. The number of stars (585)
and planets (48) included in the sample offer an order of mag-

FIG. 1.—Minimum mass (M sin i) and period (P ) distribution of 182 extra-
solar planets detected by radial velocity searches announced as of 2007 March.
The dotted lines show velocity amplitudes of 3, 10, and 30 ms�1 for a 1M⊙
star. We take the orbital parameters from the updated Butler et al. 2006 catalog
maintained by the California & Carnegie Planet Search.6

6 The Catalog of Nearby Exoplanets can be found at http://www.exoplanets
.org.
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nitude improvement over our previous Cumming et al. (1999)
analysis and, therefore, the best opportunity to date to determine
the occurrence rate of planets and their mass-period distribution.
In § 2, we describe a technique for identifying planets in radial
velocity data, discuss the detection thresholds for the survey,
and calculate limits on the mass and period of planets orbiting
stars that do not have a significant detection. In § 3, we use these
limits to correct the mass and period distributions for incomple-
teness, and then characterize the occurrence rate of planets and
the mass-period distribution. We summarize and conclude
in § 4.

2. SEARCH FOR PLANETS

2.1. Observations

The Keck Planet Search program has been in operation since
1996 July, using the HIRES echelle spectrometer on the Keck I
telescope (Vogt et al. 1994, 2000). The data we analyze here
were taken from the beginning of the survey up to 2004 August
when the HIRES spectrometer was upgraded. They consist of
radial velocity measurements of 585 F, G, K, and M stars (the
fractions in these spectral classes are 7%, 49%, 27%, and 16%,
respectively). Note that the M dwarf sample covers spectral
types M5 and earlier; the F stars are of spectral type F5 and
later. Selection of the target stars is described in Wright et al.
(2004) and Marcy et al. (2005b). They lie close to the main
sequence and are chromospherically quiet. They have B� V >
0:55, declination> �35°, and have no stellar companion within
2″. To ensure enough data points for an adequate Keplerian fit
to the data, we further select only those stars with at least 10
observations over a period of 2 years or more. This excludes
data for an additional 360 stars that were added in the 2 years
prior to 2004 August. Figure 2 is a summary of the number, time
baseline or duration, and mean rate of observations. Typical
values are 10–30 observations in total over a duration of 6–8
years, with three observations per year. The target list of stars
has changed over the years of the survey, with stars being
dropped and added (see Marcy et al. 2005b for a discussion
of the evolution of the target list), resulting in the spread in dura-
tions shown in Figure 2.

Figure 3 is a summary of the statistical Doppler measurement
errors and the estimated jitter from Wright (2005). The Doppler
error shown is the mean Doppler error for all observations for
each star. These are statistical errors determined by the weighted
uncertainty in the mean velocity of 400 spectral segments, each
2 Å long. Most stars have a mean Doppler measurement error of
≈3 ms�1 (smaller errors of ≈1 ms�1 have been achieved at
Keck following the 2004 HIRES upgrade, but these data are
not included in this analysis). The stars in the sample have been
selected to be chromospherically inactive, but still show stellar
jitter at the few m s�1 level (Saar et al. 1998). We adopt the jitter
estimates described in Marcy et al. (2005b) and Wright (2005),
in which the level of jitter is calibrated in terms of stellar proper-

ties, in particular B� V , MV , and RHK . These values include
contributions from both intrinsic stellar jitter and systematic
measurement errors. The typical jitter is σjitter ≈ 3 ms�1 for
a chromospherically quiet star, with a tail of larger values for

FIG. 2.—Number, duration, and average rate of observations for the 585 stars
in the sample (all of which have 10 or more observations over a period of 2 years
or more). The shaded histograms are for the subset of stars withM★ < 0:5 M⊙.
The dotted histograms are for the subset of 48 stars with an announced planet,
and have been multiplied by a factor of 10 for clarity.
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more active stars. This is comparable to the Doppler measure-
ment errors, indicating that the velocity measurements have
reached a precision for which stellar jitter and systematic errors
are beginning to dominate the uncertainty.

In Figures 2 and 3 the dotted histograms summarize the ob-
servations of the 110 stars with stellar masses M★ < 0:5 M⊙,
which are almost entirely M dwarfs. In § 3, we analyze the
mass–orbital period distribution separately for stars withM★ >
0:5 M⊙ and M★ < 0:5 M⊙, since the planet occurrence rate
for M dwarfs appears to be smaller than that for FGK stars.
Figures 2 and 3 show that, in general, the Doppler errors for
the M dwarfs are larger than for the FGK stars, mostly due
to their relative faintness. The dashed histograms in Figure 2
are for the subset of stars with an announced planet (see
§ 2.4). Once a candidate planetary signature is detected in
the data, we increase the priority of that star in our observing
schedule, resulting in a greater number of observations for those
stars with announced planets.

We include the Doppler errors and jitter by adding them in
quadrature to find a total estimated error for each data point i,
σ2
tot;i ¼ σ2

i þ σ2
jitter . Figure 4 shows the distribution of the resi-

duals after subtracting the mean velocity for a set of 386 “quiet”
stars that after a preliminary analysis show no excess variability,
long-term trend, or evidence for a periodicity. We plot a histo-
gram of the ratio vi=σtot;i for all 3436 velocities for these stars,
compared with a normal distribution. The width of the observed
distribution is ≈30% greater than a unit-variance Gaussian,
suggesting that the estimated variability is underpredicted by
this factor. To allow for this, we have multiplied each σtot;i

by a factor of 1.3 in the analysis that follows. The dotted histo-
gram shows a normal distribution with σ ¼ 1:3 for comparison
with the observed distribution. The Gaussian distribution
underpredicts the tails of the distribution somewhat, but other-
wise agrees quite well. The magnitude of this correction has
only a small effect on the results of this paper, because, when
assessing the significance of a Keplerian orbit fit, we calculate
ratios of χ2 (for example, the ratio of χ2s with and without the
Keplerian orbit included in the model) and so the role of the
errors σtot;i is to set the relative weighting of different data points
(see Cumming et al. 1999 for a discussion).

2.2. Long-Term Trends and Excess Variability

The first indication of a companion is often excess velocity
variability above the level expected from measurement errors

FIG. 3.—Mean Doppler velocity measurement error and estimated jitter for
the stars in the sample. The jitter estimates are taken from Wright (2005) and
include both intrinsic stellar jitter and systematic measurement errors. The
shaded histograms are for the subset of stars with M★ < 0:5 M⊙.

FIG. 4.—Distribution of measured velocity vi normalized by the estimated
variability σtot;i, the quadrature sum of Doppler measurement errors and
estimated stellar jitter. The velocities used here are for a subset of quiet stars,
after subtracting the mean for each data set. The dashed histogram shows a unit
Gaussian. We compare the observed distribution (solid curve) with a Gaussian
with errors increased by 30% (dotted curve).
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and stellar jitter. To assess this, we fit a straight line to each data
set, and compare the observed scatter about the straight line to
the predicted value. The data for each star are a set of measured
velocities fvig, observation times ftig, and estimated errors
fσtot;ig. The estimated error σtot;i is the quadrature sum of
the Doppler error and stellar jitter, as described in § 2.1. We
fit either a constant (fi ¼ a) or a straight line (fi ¼ aþ bti)
to the data. To test whether including a slope significantly
improves the χ2 of the fit,

χ2 ¼
X
i

ðvi � fiÞ2
σ2
tot;i

; (2)

we use an F -test (Bevington & Robinson 1992). The appropri-
ate F -statistic is

F ðN�2Þ;1 ¼ ðN � 2Þ
�
χ2
constant � χ2

slope

χ2
slope

�
(3)

(Bevington & Robinson 1992), where χ2
constant is the χ2 for

the best-fitting constant, and χ2
slope is the χ

2 for the best-fitting
straight line. We determine the probability that the observed va-
lue of F ðN�2Þ;1 is drawn from the corresponding F -distribution.
If this probability is smaller than 0.1%, we conclude that the
slope is significant. We make the choice of 0.1% so that we
expect no false detections in our sample of 585 stars. We find
that 95 stars (16% of the total) have a significant slope. This
fraction is consistent with the 20 out of 76 stars in the Lick
sample, or 26%, that showed a long-term trend at the 0.1%
significance level (Cumming et al. 1999).

Having decided whether a constant or a straight line best
describes the long-term behavior, we then test whether the
residuals to the fit are consistent with the expected variability.
We calculate the probability that χ2

constant or χ2
slope is drawn from

a χ2 distribution with N � 1 or N � 2 degrees of freedom,
respectively (Hoel et al. 1971). We again choose a 0.1% thresh-
old, so that, if this probability is smaller than 0.1%, we infer that
there is excess variability in the data. We find that of the 585
stars, 131 show significant variability at the 0.1% level, or 23%
of the total. Of these 131 stars, 34 (26%) also show a significant
slope (i.e., 6% of the 585 stars show both significant variability
and a significant slope). This is similar to the Lick survey
results, where we found 17 out of 76 stars, or 22%, with excess
variability (Cumming et al. 1999; see also Nidever et al. 2002
who found that 107 out of 889 stars showed velocity variations
of more than 100 ms�1 over 4 years).

2.3. Keplerian Fitting

To search for the signature of an orbiting planet, we fit
Keplerian orbits to the radial velocities, and assess the signifi-
cance of the fit (Cumming 2004, hereafter C04; Marcy et al.
2005b; O’Toole et al. 2007). The nonlinear least-squares fit

of a Keplerian orbit requires a good initial guess for the best-
fitting parameters because there are many local minima in the χ2

space. Our approach is to first limit the fit to circular orbits, and
use the best-fitting circular orbit parameters as a starting point
for a full Keplerian fit.

It is important to note here that we search only for a single
planet. We do not consider multiple planet systems in this paper;
therefore, our results for the mass and orbital period distribu-
tions apply only to the planet with the highest Doppler ampli-
tude in a given system. To be consistent in this approach, we do
not include any long-term trends detected in § 2.2 in the planet
fits, and compare only to a constant velocity when assessing the
significance of a given Keplerian fit. A star with a significant
long-term trend will, therefore, be flagged as having a signifi-
cant Keplerian fit with an orbital period much longer than the
duration of the observations. The multiplicity of planets as a
function of their orbital periods is an important question that
we leave to future work.

To find the best-fitting circular orbit, we calculate the Lomb-
Scargle (LS) periodogram (Lomb 1976; Scargle 1982) for each
data set. This involves fitting a sinusoid plus constant7 to the
data for a range of trial orbital periods P . For each period,
the goodness of fit is indicated by the amount by which includ-
ing a sinusoid in the fit lowers χ2 compared to a model in which
the velocity is constant in time. This is measured by the period-
ogram power

zðωÞ ¼ ðN � 3Þ
2

�
χ2
constant � χ2

circðωÞ
χ2
circðω0Þ

�
; (4)

where χ2
constant ¼

P
iðvi � 〈v〉Þ2=σ2

tot;i is the χ
2 of a fit of a con-

stant to the data, χ2
circ is the χ

2 of the circular orbit fit, 〈v〉 is the
mean velocity, ω ¼ 2π=P is the trial orbital frequency, and ω0 is
the best-fitting frequency. The number of degrees of freedom in
the sinusoid fit is N � 3. A large power z indicates that includ-
ing a sinusoid significantly decreased the χ2 of the fit. We
consider trial orbital periods between 1 day and 30 years.

We next choose two best-fitting solutions as starting points
for a full nonlinear Keplerian fit. The two sinusoids are chosen
so that they are well separated in frequency. We then use a
Levenberg-Marquardt algorithm (Press et al. 1992) to search
for the minimum χ2, starting with a Keplerian orbit with the
same period and amplitude as the sinusoid fits, and trying
several different choices for the time of periastron, eccentricity,
and longitude of pericenter. Having obtained the minimum χ2

from the Keplerian fit, we define a power ze to measure the
goodness of fit analogous to the LS periodogram power for
circular orbits,

7 Note that we extend the original LS periodogram by allowing the mean to
“float” at each frequency, following Walker et al. (1995), Nelson & Angel
(1998), and Cumming et al. (1999), rather than subtracting the mean of the data
prior to the fit.
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zeðωÞ ¼
ðN � 5Þ

4

�
χ2
constant � χ2

KepðωÞ
χ2
Kepðω0Þ

�
(5)

(C04), where χ2
Kep is the χ2 of a fit of a Keplerian orbit to the

data (with N � 5 degrees of freedom).
The significance of the fit depends on how often a power as

large as the observed power z0 would arise purely due to noise
alone (C04; Marcy et al. 2005b). For a single frequency search,
the distribution of powers due to noise alone can be written
down analytically; for Gaussian noise, it is

Probðz > z0Þ ¼
�
1þ ðν þ 2Þ

2

4z0
ν

��
1þ 4z0

ν

��ðνþ2Þ=2
(6)

(C04), where ν ¼ N � 5. However, the total false-alarm prob-
ability depends on how many independent frequencies are
searched. For a search of many frequencies, each independent
frequency must be counted as an individual trial. The false-
alarm probability (FAP) is

F ¼ 1� ½1� Probðz > z0Þ�Nf ≈NfProbðz > z0Þ; (7)

where Nf is the number of independent frequencies, and in the
second step we assume F is small. For small F , the FAP is
simply the single frequency FAP multiplied by the number
of frequencies.

An estimate of the number of independent frequencies is
Nf ≈ TΔf , where Δf ¼ f2 � f1 is the frequency range
searched and T is the duration of the data set (C04). For evenly
sampled data, the number of independent frequencies is N=2,
ranging from 1=T to the Nyquist frequency fNy ¼ N=2T. For
unevenly sampled data, Horne & Baliunas (1986) found that
Nf ∼N for a search up to the Nyquist frequency (see also Press
et al. 1992). This agrees with our simple estimate because
Nf ≈ f2T ≈N=2. However, uneven sampling allows frequen-
cies much higher than the Nyquist frequency to be searched (see
discussion in Scargle 1982). In general,Nf ≫ N , by a factor of
≈f2=fNy. For example, a set of 30 observations over 7 years
has fNy ≈ 1=ð6monthsÞ. A search for periods as short as
2 days therefore hasNf ≈Nð6months=2 daysÞ≈ 90N ≈ 2700.
Therefore to detect a signal with a FAP of 10�3, the period-
ogram power for that signal must be large enough, or the
Keplerian fit good enough, that the single-trial false-alarm
probability is ∼10�6.

The estimate for Nf and equations (6) and (7) allow an
analytic calculation of the false-alarm probability (see Fig. 2
of C04). To check this analytic estimate, we determine the
FAP and Nf numerically using Monte Carlo simulations.
The disadvantage of calculating the FAP in this way is that
it is computationally intensive for Keplerian fits. This is the
reason we consider only the two best-fitting sinusoid models
as starting points for the Keplerian fit. We find that the analytic
estimate of the FAP agrees well with the FAP determined by the

Monte Carlo simulations. Our method is to generate a large
number N trials of data sets consisting of noise only, using the
same observation times as the data, and calculate the maximum
power for each of them. The fraction of trials for which the max-
imum power exceeds the observed value then gives the false-
alarm probability. In addition, by fitting equation (7) to the
numerical results, we can determine Nf . This allows a determi-
nation of the FAP even when it is much smaller than 1=N trials

(C04). We generate the noise in two ways, which give similar
results for the FAP (see Cumming et al. 1999): (i) by selecting
from a Gaussian distribution with standard deviation given by
the observed error σtot;i for each observation time, or (ii) by
selecting with replacement from the observed velocities (after
first subtracting the mean). The second approach (a “bootstrap-
ping” method; see Press et al. 1992) has the advantage that it
avoids the assumption of Gaussian noise; instead, the actual
velocity values are used as an estimate of the noise distribution.
It is similar to the “velocity scrambling” method of Marcy et al.
(2005b) for determining the false-alarm probability for Kepler-
ian fits, with the main difference being that we select with
replacement from the observed velocities rather than randomiz-
ing the order of the observations.

2.4. Significant Detections

Figure 5 shows the results of the search for significant
Keplerian fits. We plot the best-fit amplitude and period for stars

FIG. 5.—Results of the search for significant Keplerian fits. The solid triangles
(76 points) and open circles (48 points) show periodicities with FAP < 10�3.
The open circles indicate stars that have an announced planet. The vertical
dashed line shows P ¼ 8 years, corresponding to the duration of the survey.
Dotted lines show the velocity amplitude corresponding to M sin i ¼ 0:1, 1,
and 10 MJ for a solar mass star.
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with FAP < 0:1%, divided into two categories. The open circles
are for stars with an announced planet (i.e., a published orbital
solution) as of 2005 May; the solid triangles are stars with a
significant Keplerian fit, but not confirmed as a planet.8 We will
refer to these significant detections that are not announced as
planets as “candidate” planets. There are 48 announced planets
detected in our search (8.2% of the total number of stars), and 76
candidates (13% of the total). All but five of the announced pla-
nets in our sample of stars were detected by our algorithm (the 5
planets that were not detected orbit stars that were added to the
survey only recently to confirm detections by other groups; see
discussion below).

Of the 76 candidates, 27 have large velocity amplitudesK ≳
200 ms�1 corresponding to companion masses ≳20 MJ. The
remaining 49 candidates, which have MP sin i < 15MJ , fall
into two groups: they are either at long orbital periods
(P ≳ 2000 days), or low amplitudes (K ≲ 10–20 ms�1) com-
pared with the announced planets. That these are the detections
that have not yet been announced makes sense because (i) it is
difficult to constrain orbital parameters for a partial orbit, and so
we generally wait for completion of at least one full orbit before
announcing a planet, and (ii) for low-amplitude signals, it be-
comes difficult to disentangle possible false signals from stellar
photospheric jitter or from systematic variations in the measured
velocities.

In the first case (long orbital periods), it is simple to under-
stand the detection limit, which is set by the time baseline of
the observations. The vertical dashed line in Figure 5 shows
an orbital period of 8 years (the duration of the longest data
set considered here), and nicely divides the announced and can-
didate planets. In the second case (low amplitudes), an interest-
ing question to consider is how the threshold for announcing a
planet relates to the statistical threshold for detecting a Kepler-
ian orbit. The statistical detection threshold depends on both the
number of observations and signal amplitude. For circular
orbits, an analytic expression for the signal-to-noise ratio
required to detect a signal with 50% probability is given by

Kffiffiffi
2

p
s
¼

��
Nf

F

�
2=ν

� 1

�
1=2

(8)

(Cumming et al. 2003; C04), where F is the false-alarm prob-
ability associated with the detection threshold,Nf is the number
of independent frequencies, s is the noise level, and ν ¼ N � 3.
The number of independent frequenciesNf is set by the number

of observationsN and the duration of the observations T , as we
discussed in § 2.3. Figure 6 compares the signal-to-noise ratio
for each detection with this analytic result. For this comparison,
we define the noise s to be the rms amplitude of the residuals to
the best-fit orbit, and the signal-to-noise ratio asK=s. We show
only those detections with best-fitting period P < 1000 days
and mass Mp sin i < 15 MJ, for which the signal-to-noise ratio
is expected to be the main limiting factor. The dotted curves
show the analytic result for a detection probability of 50%
and 99%.

The candidate detections mostly fall near the detection
curves in Figure 6, whereas the announced planets lie above
the curves. The five crosses represent planets that were detected
by other groups. Their host stars, HD 8574, HD 74156, HD
82943, HD 130322, and HD 169830, were added to the Keck
survey to confirm these detections, but do not yet have enough
observations for a detection. They all lie below the dotted
curves.

Inspection of Figure 6 shows that the detection threshold is
determined by statistics when the signal-to-noise ratio is larger
than 2–3. For lower amplitude signals, the statistical signifi-

FIG. 6.—Parameter space of signal-to-noise ratio K=s against number of ob-
servations for the significant detections. The “noise” is the standard deviation of
the residuals to the best-fit Keplerian orbit. We plot only those points with per-
iods <1000 days, and planet mass <15 Jupiter masses, for which the signal-to-
noise ratio is expected to be the limiting factor. The open circles indicate stars
that have an announced planet. The solid triangles show candidate planets which
have FAP < 10�3. The crosses show the five planets that were announced by
other groups, but not flagged as significant in our search, which includes only a
small number of observations for these stars. The dotted curves show analytic
results for the signal-to-noise ratio needed for a detection probability of 50%
(lower curve) and 99% (upper curve) (see eq. [8]; we assume Nf=F ¼ 106).

8We choose 2005 May as the cutoff for publication of an orbital solution so
that the announcement of the planet is based only on the data considered here,
which is taken before 2004 August. In fact, 7 of our 78 candidates have since
been announced based on additional data collected since 2004 August. They are
four of the five planets announced by Butler et al. (2006b), the planet orbiting the
M dwarf GJ 849 (Butler et al. 2006a), and the two long-period companions with
incomplete orbits described by Wright et al. (2007).
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cance is no longer enough, since as we mentioned there is the
danger that the observed variation is in fact from stellar jitter or
systematic effects. Figure 6 shows that the effective detection
threshold is then at a signal-to-noise ratio of ≈2. To detect a
planet with a lower amplitude than this requires significantly
more work to rule out false signals.

Comparison with the published orbits shows that our auto-
mated technique reproduces the fitted orbital parameters well,
except for 2 of the 48 announced planets. For HD 50499, we
find an orbital period of 2 × 104 days rather than 3000 days. We
include a slope in the fit for this star, which reproduces the pub-
lished orbital parameters. We find a period of 15 rather than
111 days for the highly eccentric planet around HD 80606
(which has e ¼ 0:93; Naef et al. 2001). These examples illus-
trate the weakness of the Lomb-Scargle periodogram at provid-
ing a good initial guess for the Keplerian fit, in particular for
eccentric orbits, and emphasizes the importance of trying many
different starting periods. There are also strong aliasing or spec-
tral leakage effects at 1 day, and so when fitting Keplerian
orbits, we force the orbital period to be longer than 1.2 days
rather than the 1-day limit of our periodogram search. We might
also expect the search to fail for multiple planet systems; how-
ever, in all cases of announced multiple planet systems, we find
a significant single planet fit, usually for the planet with the
largest velocity amplitude. This is the case even when the
periods are close or are harmonically related. For example,
HD 128311 has two planets in a 2:1 resonance (Vogt et al.
2005). We detect the longer-period planet in our search.

2.5. Upper Limits

We next calculate upper limits on the radial velocity ampli-
tude of planets for those stars without a significant detection.
To reduce the computational time and because we are not con-
sidering the eccentricity distribution in detail in this paper, we
place upper limits on the amplitude of circular orbits only. Endl
et al. (2002) and C04 showed that the detectability of a planet in
an eccentric orbit is only slightly affected by eccentricity for
e≲ 0:5 but can be substantially affected for larger eccentricities
if the phase coverage is inadequate (e.g., see Fig. 6 of C04).
About 14% of the known planet population has e ≥ 0:5. In
our sample, 6 stars out of 48 announced planets have e > 0:5
(13%), and 3 have e > 0:6 (6%). However, the true fraction with
eccentricities greater than 0.5 may be larger because of the
selection effects acting against highly eccentric orbits. Of the
76 candidate periodicities, 30 have e > 0:5, and 11 have
e > 0:6. The larger fraction of eccentric orbits for these candi-
dates than for the announced planets is likely due to the long
orbital periods of many of the candidates for which the orbital
eccentricity is not well constrained. We leave a discussion of the
eccentricity distribution to a future paper, and here assume cir-
cular orbits.

For all stars with FAP > 10�3, we calculate upper limits as
described in Cumming et al. (1999), utilizing the LS periodo-

gram for sinusoid fits. At a given orbital period, we generate
fake data sets of a sinusoid plus Gaussian noise. We assume
that the amplitude of the noise is equal to the rms of the residuals
to the best-fitting sinusoid for the actual data. We then find the
sinusoid amplitude that gives a LS periodogram power
larger than the observed value in 99% of trials. We calculate the
upper limit on K as a function of orbital period. However,
the upper limit is insensitive to period for P < T because
the uneven sampling gives good phase coverage for most
periods (Scargle 1982; Cumming et al. 1999). For P > T ,
the 99% upper limit scales close to K ∝ P 2 (for periods T ≲
P ≲ 100πT=8≈ 300 years; see C04).

Figure 7 is a histogram of the mean upper limit on K for
orbital periods shorter than the duration of the observations
(P < T ).9 Most stars have upper limits to K of between 10
and 15 ms�1. Taking a typical value for the quadrature sum
of jitter and Doppler errors to be σ≈ 3

ffiffiffi
2

p
ms�1 (since both

jitter and Doppler errors are typically 3 ms�1), these upper
limits correspond to signal-to-noise ratios K=σ of between 2
and 3. This compares well with the analytic formula in equa-
tion (8), which gives K ≈ 2σ for N ¼ 20 and Nf ¼ 1000.
Notice that ≈10% of stars have upper limits >30 ms�1. This
is due to either large Doppler measurement errors for these stars
or a number of observations that are too small to give a good
limit. The dotted histogram shows the upper limits for the M
dwarfs only (M★ < 0:5 M⊙). The upper limits are on average
higher for these low-mass stars. Radial velocity measurements
are more difficult for M dwarfs because they are much fainter
than solar-mass stars.

2.6. Summary of Results

Figure 8 is a summary of the analysis in this section in the
mass–orbital period plane. To convert between velocity ampli-
tude K and MP sin i, we require the stellar mass (eq. [1] gives
MP sin i ∝ KM

2=3
★ ). For the stars with significant Keplerian

fits, either announced or candidate planets, we use the latest
mass estimates given in the Takeda et al. (2007) and Valenti
& Fisher (2005) catalogs (except for seven of the candidate stars
that are listed in neither Takeda et al. 2007 nor Valenti & Fischer
2005). For convenience, approximate stellar masses of the
remaining stars are determined using the B� V stellar mass
relation given in Allen (2000).10

9We average the upper limits over period here only to summarize the results of
our calculation. In the next section, where we correct for incompleteness, we do
not average over period but instead use the upper limits calculated as a function
of period.

10 This relation underestimates the stellar mass for some stars, typically by
30% but sometimes as much as a factor of 2, for those stars that are metal rich.
Therefore we expect the blue curves showing upper limits onMP sin i as a func-
tion of period averaged over all stars in Figs. 8 and 9 to be uncertain at the ∼20%
level because of this approximation. However, note that this uncertainty does not
affect the completeness corrections and mass and period distributions calculated
in § 3 because they depend on the velocity upper limit directly. The only stellar
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We show the detections with FAP < 10�3 in Figure 8 as
solid triangles and open circles, dividing them into candidates
and announced planets, respectively. As expected from the dis-
cussion in § 2.4, the candidate periodicities (solid triangles) are
mainly concentrated atK ≲ 10 ms�1 or at P > 1000 days. The
solid curves in Figure 8 summarize the upper limits as a function
of period. For a given period, they show the mass that can be
excluded at the 99% level from 5%, 20%, 50%, 80%, and 95%
of stars. The aliasing effects are not strong: the upper limits vary
smoothly with period because of the uneven time sampling
which gives good phase coverage at most orbital periods
(e.g., Scargle 1982). However, there is a slight reduction in sen-
sitivity at periods close to 1 year, 2 years, and 1 day. The curves

turn upward and scale as P 2 for periods beyond ≈3000 days
(≈8 years), close to the duration of the observations.

The results shown in Figure 8 allow us to draw a number of
conclusions. First, there are many candidate gas giants in orbital
periods of 5–20 years, similar to our Solar System. Figure 8
shows that the main limitation at the moment for detection
of an analog of our Solar System is the duration of the survey,
rather than the sensitivity. We suspect that some of these long-
period candidates will turn out to be more massive that the
M sin i indicated in Figure 8, because only a partial orbit has
been observed, leaving the fitted mass uncertain. There are
several candidates with K < 10 ms�1. For these candidates,
further observations are needed to rule out stellar jitter as the
cause of the observed periodic variability. The upper limit
curves continue smoothly to periods smaller than 3 days, and
are not noticeably affected until they get close to 1 day. This
implies that the abrupt drop in the number of planets at P orb ≲
3 days is a real feature. In the period valley between 10 and 100
days (Jones et al. 2003; Udry et al. 2003), the detectability is
good, with upper limits of≈0:1–0:2 MJ for 50% of stars. How-
ever, for periods >100 days, the upper limits are larger,
0:3–0:6 MJ. Therefore, the reported lack of objects with M <
0:75 MJ at P > 100 days by Udry et al. (2003) is clearly

FIG. 8.—Significant periodicities (FAP < 10�3; open circles and solid trian-
gles) in the mass-period plane. For a given period, the solid curves show the
mass that can be ruled out at the 99% level from 5%, 20%, 50%, 80%, and
95% of stars. Note that, whereas the search for planets involves full Keplerian
fits to the data, the upper limits are for circular orbits only (applicable to Ke-
plerian orbits with e≲ 0:5; see discussion in § 2.5). The dotted lines show ve-
locity amplitudesK ¼ 3, 10, and 30 ms�1 for a 1 M⊙ star. The vertical dashed
line shows P ¼ 8 years, corresponding to the duration of the survey. J and S
label the locations of Jupiter and Saturn in this plot.

FIG. 7.—Upper panel: histogram of the 99% upper limit on velocity ampli-
tude K of circular orbits for 461 stars without significant detections. The upper
limit is averaged over orbital periods smaller than the duration of the observa-
tions (P < T ). Lower panel: the fraction of stars whose upper limit is less than a
given value of K. In each panel, the solid histogram is for the entire sample of
stars. The dotted histogram is for the 103 stars with M★ < 0:5M⊙.

mass information needed in § 3 is for the announced and candidate planets, for
which we use the accurate Takeda et al. (2007) or Valenti & Fischer (2005)
masses.
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dependent on understanding the selection effects in this region.
We address this in the next section by using these upper limits
to correct the observed period and mass distributions for
incompleteness.

3. THE MASS-PERIOD DISTRIBUTION

In this section, we describe a method for correcting for
incompleteness by taking into account the nondetections and
discuss the resulting distribution of minimum masses and
orbital periods. For conciseness we refer to the minimum mass
MP sin i as “mass” throughout this section, although it should
be noted that we do not include the distribution of inclination
angles i, which is needed to determine the true mass from the
measured minimummass (Jorissen et al. 2001; Zucker &Mazeh
2001). This is reasonable for a large statistical sample. The
average value of the ratio of minimum mass to true mass is
〈 sin i〉 ¼ π=4 ¼ 0:785, a small correction for this analysis,
and we also note that power-law scalings are not affected by
the unknown sin i factors (Tabachnik & Tremaine 2002).

3.1. Including the Upper Limits

Several methods have been discussed in the literature for
finding the distribution most consistent with a set of detections
and upper limits (Avni et al. 1980; Feigelson & Nelson 1985;
Schmitt 1985). Such data are known as censored data, and the
analysis as survival analysis. Correcting for the upper limits
involves counting which of them usefully constrain the distri-
bution at a given point. Avni et al. (1980) present a method for
doing this counting for a one-dimensional distribution. Here, we
generalize this approach to the two-dimensional mass-period
plane. We follow Avni et al. (1980) and present a heuristic
derivation in this section; a more detailed derivation by a max-
imum likelihood method is given in the Appendix. The reader
may find it useful to compare our discussion with § III.D of
Avni et al. (1980) which describes the one-dimensional case.

It is instructive to consider a hypothetical example to develop
some intuition. Imagine that after looking at a given star there
were three possible outcomes: we could either (i) detect a pla-
net, (ii) completely exclude the presence of a planet, or (iii) are
not able to say anything (i.e., cannot exclude or confirm the
presence of a planet). First, we observe N★ stars with the result
thatNplanet planets are found, and we are able to rule out planets
from all of the remaining stars. The best estimate of the fraction
of stars with planets is then f ¼ Nplanet=N★. However, what if
we are able to rule out planets only from a subset of stars,
Nnoplanet < N★ �Nplanet? In this case, the best estimate of
the planet fraction is to take the ratio of the number of detections
to the number of stars for which a detection was possible,
f ¼ Nplanet=ðNnoplanet þNplanetÞ. We must take Nnoplanet þ
Nplanet < N★ as the denominator because for each detected pla-
net, the actual pool of target stars is less than the total pool,
because the data for some of the stars are inadequate to detect

that planet. As an extreme case, consider looking at 100 stars,
and being able to say that one has a planet, one does not, and
nothing about the remaining 98 stars (Nplanet ¼ 1 and
Nnoplanet ¼ 1). The best estimate for the planet fraction is then
50%. The extra 98 stars for which no useful upper limit could be
obtained do not contribute to the estimate. This simple example
tells us how to interpret Figure 8. In a region of the mass-period
plane in which planets can be ruled out for a fraction k of stars,
the best estimate of the number of planets is ≈1=k times the
number of detections.

Our approach is to assign an effective number Ni for each
detected planet i. If selection effects are unimportant, Ni ¼ 1,
so that the detected planet is a good representation of the num-
ber of planets at that mass and period. However, Ni will be
greater than 1 if planet i has orbital parameters in part of the
mass-period plane where completeness corrections are impor-
tant. For instance, if the completeness for planets at a given mass
and period is 50%, thenNi for a planet i at that mass and period
will be 2. The idea behind this method is that we are sampling
the mass and period distribution at the discrete set of points
corresponding to the mass and periods of the detected planets.
Of course, the underlying distribution is likely to be smooth, and
so the quantity Ni=N★ should be thought of as the probability
that a star has a planet with mass and period close to those of
planet i. The normalization of Ni is such that the total fraction
of stars with planets is

P
iNi=N★.

To calculate Ni for a given star with a detected planet, we
must count how many of the stars with nondetections could
have an undiscovered planet with the same mass and period
as planet i. We therefore consider each nondetection in turn
and ask whether the upper limit Kup calculated in § 2.5 allows
a companion with period Pi andKi to be present. If so, we must
increase Ni to allow for this incompleteness. However, the
upper limit Kup allows a hypothetical planet to be present with
any amplitude or orbital period that satisfies K < Kup, not just
the orbital parameters of planet i. Therefore, rather than increas-
ing Ni by 1 for every upper limit that allows additional undis-
covered planets at that location, we must increase Ni by the
probability that the hypothetical planet would have the same
parameters as planet i. In effect, we “share out” the hypothetical
planet among all the possible locations in mass-period space
that are allowed by the upper limit. This leads to the following
rule for increasing Ni each iteration:

Nnþ1
i ¼ 1þ

X
j;Kup;j>Ki

Nn
i

N⋆ZðKup;jÞ
; (9)

where n labels the iteration and the sum is over all nondetec-
tions j, which allow an undiscovered planet with the properties
of planet i to be present. Here, for each of the nondetections
considered in the sum, Kup;j is the upper limit on the velocity
amplitude (§ 2.5) at the orbital period of planet i. The second
term in equation (9) is the probability that a planet with a
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velocity amplitude below the upper limit has the period and
amplitude corresponding to planet i. It is weighted by the
normalization factor Z in the denominator, which counts all
the possibilities consistent with the upper limit: these are either
(i) a planet is present withK < Kup, or (ii) no planet is present.
Mathematically, we write this as the probability that the star
does not have a planet with an amplitude that violates the upper
limit (K > Kup),

ZðKupÞ ¼ 1�
X

i;Ki>Kup

Nn
i

N★
; (10)

where the sum is over all detected planets i whose velocity
amplitude Ki exceeds Kup.

For example, suppose we wish to calculate Ni for planet j
with K ¼ 20 ms�1. We start with our initial guess of N0

i ¼ 1
for all i. We then turn to planet j, and, for that planet, consider
each star with a nondetection in turn. Let us say that the first
such star has high jitter or a small number of data points, so
that the upper limit on the velocity amplitude of a companion
is 30 ms�1. This means that a companion with an amplitude of

20 ms�1, the same as planet j, cannot be ruled out, and so we
must add a contribution to Nj. To do this, we first use equa-
tion (10) to calculate Z (30 ms�1), where the sum is over
all detected planets with K > 30 ms�1. If there are 30 such
planets, and 500 total stars, then using the current values N0

i ¼
1 (this is the first iteration), we find Zð30 ms�1Þ ¼
1� 30=500 ¼ 0:94. This is the probability (given our current
values for Ni) that a star does not have a planet with
K > 30 ms�1. We use this value in the first term of the sum
in equation (9), which means that we add an amount ð1=500Þ
ð1=0:94Þ ¼ 2:1 × 10�3 toN0

j . Because we know that there is no
planet with K > 30 ms�1 around this star, the probability that
there is a planet with the properties of planet j is larger than
1=500. We now continue with the sum. Let us say that the sec-
ond star with a nondetection is well observed and those obser-
vations rule out a planet with the properties of planet j. This star
then contributes nothing to the sum in equation (9). We continue
for all stars with nondetections to complete the sum in equa-
tion (9) and arrive at the new value N1

j . We then repeat this
calculation to obtain N1

i for all detected planets i. This entire
procedure is iterated until all values of Ni have converged.

TABLE 1

CUMULATIVE PERCENTAGE OF STARS WITH A PLANETa

P < 11:5 days 100 days 1 year 2.8 years (1022 days) 5.2 years (1896 days) 11.2 years (4080 days)

a < 0:1 AUb 0.42 AU 1 AU 2 AU 3 AU 5 AU

M > 2MJ . . . . . 0 0.43 (0.3) 1.1 (0.5) 1.9 (0.6) 2.6 (0.7) 4.2 (0.9)
0 0.42 (0.3) 1.1 (0.5) 1.9 (0.6) 2.5 (0.7) 4.0 (0.9)

0 0.45 (0.3) 1.1 (0.5) 2.1 (0.7) 2.8 (0.8) 3.0 (0.8)

0 0.42 (0.3) 1.1 (0.5) 1.9 (0.7) 2.5 (0.8) 2.8 (0.8)

1MJ . . . . . . . . . . . 0.43 (0.3) 0.85 (0.4) 1.9 (0.6) 3.9 (0.9) 4.6 (1.0) 8.9 (1.4)
0.42 (0.3) 0.85 (0.4) 1.9 (0.6) 3.8 (0.9) 4.4 (1.0) 8.3 (1.4)

0.46 (0.3) 0.9 (0.4) 2.1 (0.7) 4.3 (1.0) 5.0 (1.0) 6.3 (1.2)

0.42 (0.3) 0.85 (0.4) 1.9 (0.7) 3.8 (1.0) 4.4 (1.0) 5.5 (1.2)

0:5MJ . . . . . . . . . 1.1 (0.5) 1.9 (0.6) 3.3 (0.8) 6.3 (1.2) 7.5 (1.3)
1.1 (0.5) 1.9 (0.6) 3.2 (0.8) 5.9 (1.2) 7.0 (1.3)

1.2 (0.5) 2.1 (0.7) 3.5 (0.9) 6.2 (1.2) 7.2 (1.2)

1.1 (0.5) 1.9 (0.7) 3.2 (0.9) 5.5 (1.2) 6.4 (1.2)

0:3MJ . . . . . . . . . 1.5 (0.6) 2.4 (0.7) 3.7 (0.9) 6.7 (1.2) 8.5 (1.3)
1.5 (0.6) 2.3 (0.7) 3.6 (0.9) 6.4 (1.2) 7.6 (1.3)

1.6 (0.6) 2.6 (0.7) 4.0 (0.9) 6.7 (1.2) 7.7 (1.3)

1.5 (0.6) 2.3 (0.7) 3.6 (0.9) 5.9 (1.2) 6.8 (1.3)

0:1MJ . . . . . . . . . 2.0 (0.7) 3.9 (0.9)

1.9 (0.7) 3.4 (0.9)

2.2 (0.7) 4.3 (1.0)

1.9 (0.7) 3.4 (1.0)

aThe percentage of F, G, and K stars with a planet at a shorter orbital period than the one given, and withMP sin i greater than the given mass,
but less than 15 MJ. In each case, we give four values: (1) the percentage derived by including both announced and unannounced detections,
(2) the same as (1) but without completeness corrections, (3) the percentage derived from including the announced planets as detections but
treating the unannounced detections as upper limits, (4) same as (3) but without completeness corrections. The total number of stars is 475. The
Poisson error is given in parentheses after each entry. See § 2.1 for a description of the stellar sample selection and distribution of spectral types.

b The corresponding semimajor axis for a solar mass star.
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An important question is how much our results depend on
the candidate detections, since these detections await further
observations before they can be confirmed as being due to
an orbiting planet. Long-period signals need further observa-
tions to cover at least one orbit; low-amplitude signals are po-
tentially due to other factors such as stellar jitter. Therefore, it is
likely that some of these candidate periodicities are not due to a
planet and should not be included. Even if they are due to a
planet, as more data are collected, the best-fit orbital parameters
of these candidates may change. To answer this question, we
have calculated the values of Ni both with and without the can-
didate detections, by either including the candidate detections or
by treating them as nondetections, with the upper limit Kup gi-
ven by the detected velocity amplitude. We find that our con-
clusions regarding the mass-orbital period distribution are
similar in each case (see, for example Table 1 discussed below).

3.2. A Power-Law Fit Using Maximum Likelihood

As an alternative to the nonparametric description of the
period and mass distribution that we described in the last sec-
tion, we also fit the distribution with the simplest parametric
model, a power law in mass and period. One way to do this
would be to take the corrected data given by the Ni values
we have described, and fit a power law to the histogram or
the cumulative distribution. Instead, we have used a maximum
likelihood technique to fit a power law in mass and orbital per-
iod simultaneously to the original data (see also Tabachnik &
Tremaine 2002). In the Appendix we start with the same like-
lihood that is used to derive the nonparametric technique
described in § 3.1 but instead consider a parametric model in
which the probability of a star having a planet at mass M
and period P is dN ¼ CMαP βd lnMd lnP , where C is a
normalization constant. The resulting expression for the likeli-
hood is given in equation (A19), and we evaluate this numeri-
cally and maximize it with respect to the two parameters
α and β.

3.3. Results for F, G, K dwarfs

We first present results for the 475 stars withM★ > 0:5 M⊙
which have F, G, and K spectral types (see § 2.1 for a discussion
of the sample selection and the range of spectral types). We do
not attempt a detailed study of the stellar-mass dependence of
planet occurrence rate or orbital parameters in this paper.
Fischer & Valenti (2005) show that the apparent rate of occur-
rence of planets increases by a factor of 2 for stellar masses
between 0.75 and 1:5 M⊙. Investigating the stellar-mass depen-
dence of planet properties requires untangling it from the effect
of stellar metallicity, beyond the scope of this paper (e.g., see the
recent discussion in Johnson et al. 2007). However, several re-
cent papers have pointed out that the planet occurrence rate
around M dwarfs appears to be several times lower than around
F, G, and K stars (Butler et al. 2004b, 2006a; Endl et al. 2006;

Johnson et al. 2007). To avoid biasing our results for the occur-
rence rate of planets, and to investigate the occurrence rate
around M dwarfs further, we treat stars with masses
< 0:5 M⊙ separately in § 3.4. In addition, three of the 48 stars
with announced planets were added to the survey to confirm
detections by other groups. To ensure a fair sample, we remove
these stars from our analysis.

Figure 9 shows the results of the calculation described in
§ 3.1. We plot the mass and period of announced planets (black
circles) and candidate detections (green circles), as well as the
upper limit contours (blue curves) as in Figure 8. The value of
Ni for each detection is indicated by the area of the circle. The
smallest circles, well above the detection threshold, correspond
to Ni ¼ 1. At lower masses, the values of Ni are roughly con-
sistent with the simple argument given in § 3.1, that is, if the
detection lies at a mass and period excluded by a fraction k of
the upper limits, then roughlyNi ≈ 1=k. ForK ≈ 10 ms�1, the
completeness corrections are roughly a factor of 2, and are close
to unity for K ≳ 20 ms�1.

Figure 10 shows the result of our power-law fit (§ 3.2). We fit
the data in the mass range 0:3–10 MJ and 2–2000 days, which
includes 32 announced planets, and 4 candidate detections. The
constraints on α and β are shown in Figure 10. The best-fit
values that maximize the likelihood are α ¼ �0:31� 0:2 and

FIG. 9.—Detections for F, G, and K stars corrected for completeness of the
survey. We show the announced planets (those published by 2005 May; black
circles) and candidates (significant detections not corresponding to a published
planet; green circles), with the area of the circle indicating the size of the com-
pleteness correction Ni for each point. The vertical dashed line indicates a
period of 8 years, roughly equal to the duration of the survey. The dotted lines
show velocity amplitudes of 3, 10, and 30 ms�1 for a 1M⊙ star. The blue
curves summarize the upper limits as in Fig. 8. See the electronic edition of
the PASP for a color version of this figure.
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β ¼ 0:26� 0:1. The error in α is larger than the error in β, pre-
sumably because the dynamic range in orbital periods is greater
than in the planet masses. The best-fitting power law gives a
fraction of stars with a planet of 10.5% in this mass and period
range, which compares with the value of 8.5% derived from our
completeness corrections (see Table 2). The values of α and β
are slightly correlated, in the same sense as Tabachnik & Tre-
maine (2002) observed, but to a smaller degree.

3.3.1. Fraction of Stars with a Planet

SummingNi in a particular region of the mass–orbital period
plane and dividing byN★ gives the fraction of stars with planets
in that region. The percentage of stars with a planet more mas-
sive than a given mass and closer to the star than a given orbital

period is listed in Table 1. In parentheses we give the Poisson
error based on the number of detections. For each table entry, we
give four values. The first two are the percentages derived by
including both announced planets and unannounced candidates,
with and without completeness corrections included. The third
and fourth values are the percentages derived by including
the announced planets only (in which case the velocity ampli-
tude of each candidate is treated as an upper limit on velocity
amplitude rather than a detection), with and without complete-
ness corrections included. The two values are similar over most
of Table 1. The largest differences of ≈30% are at long
periods>2000 days, where there are very few announced
planets, and many candidate periodicities.

3.3.2. Distribution of Orbital Periods

Figure 11 shows the orbital period distribution for planets
with MP sin i > 0:3 MJ for orbital periods up to 2000 days,
beyond which the detectability declines as the orbital period
approaches the duration of the survey. In the lower panel, the
dotted histogram is the distribution of detections, including
announced and candidate detections; the solid histogram is
the distribution of detections after correcting for completeness,
i.e., summing Ni in each bin. For each bin, we indicate the ex-
pected Poisson

ffiffiffiffiffi
N

p
errors based on the number of detections

but rescaled by the ratio of
P

Ni in that bin to the number
of detections in that bin. The upper panel shows the cumulative
histogram, showing the fraction of stars with a planet within a
given orbital period. For clarity, we do not show the Poisson
errors on the cumulative histogram, but they can be calculated
based on the total number of stars. For example, approximately
2.4% of stars have a planet more massive than 0:3 MJ with an
orbital period of <100 days. This represents 11:3� 3:4 stars
out of the total of 472, or a fraction 2:4� 0:7%.

At the shortest periods, the period distribution shows the
well-known pile-up of planets at orbital periods close to 3 days.
This is illustrated in more detail in Figure 12, which shows the
period distribution for those planets with P < 30 days, and
masses MP sin i > 0:1 MJ (the increased detectability of
close-in planets means that we can go to lower masses than
in Fig. 11). All of these planets are announced; there are no

FIG. 10.—Contours of constant likelihood for a power-law fit
dN ∝ MαP βd lnMd lnP . The contours correspond to the 68% and 95% con-
fidence intervals (ΔL=2 ¼ 1 and 4). The best-fitting values are α ¼ �0:31 and
β ¼ 0:26. We include announced planets and candidates in the period range
2–2000 days and mass range 0:3–10 MJ in the fit.

TABLE 2

EXTRAPOLATED OCCURRENCE RATES OF LONG-PERIOD ORBITSa

Model P < 5:2 yearsa < 3 AU
11 years
5 AU

32 years
10 AU

89 years
20 AU

flat
dN=d log10 P ¼ 6:5% . . . . .

8.5 (1.3) 11 (1.7) 14 (2.1) 17 (2.6)

power law
d lnN=d lnP ¼ 0:26 . . . . . .

8.5 (1.3) 11 (1.7) 14 (2.3) 19 (3.0)

a The cumulative percentage of stars with a planet Nð< P Þ, based on either a flat
extrapolation or power-law extrapolation beyond P ¼ 2000 days, for planet masses
0:3 < MP sin i < 15 MJ. The semimajor axes are for a solar mass star. The extrapolated
Poisson error is indicated in parentheses.
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candidate planets in this range of mass and period. Butler et al.
(2006b) mention that there are no significant selection effects
that would lead to this pile-up: we can see that very clearly in
Figure 9, in which the upper limit curves continue smoothly to
periods as short as 1 day with no change in detectability. The
statistical significance of the pile-up in our data depends on the
model and range of orbital periods against which it is compared.
A Kolmogorov-Smirnov (KS) test gives a 0.4% probability that
the observed distribution is drawn from a uniform distribution in
logP in the decade 1 to 10 days. If we extend the uniform dis-
tribution out to 100 days, the KS probability is 20%.

As we described earlier, a power-law fit to the period distri-
bution gives dN=d lnP ∝ P 0:26, which rises to longer periods.
However, an alternative description of the distribution is a rapid
increase in the planet fraction at orbital periods of ≈300 days.
Figure 11 shows that there is a change of slope in the cumulative
distribution, which suggests that the planet fraction increases
beyond orbital periods of≈300 days. The change in slope does
not depend on whether the candidate planets are included. If
we assume that the orbital period distribution above and below
300 days is flat, we find that the fraction of stars with a planet
per decade is dN=d log10 P ¼ 1:3� 0:4% at short periods, and
dN=d log10 P ¼ 6:5� 1:4% at long periods (the latter becomes
dN=d log10 P ¼ 5:1� 1:2% if only announced planets are
included). Therefore, the incidence of planets increases by a
factor of 5 for periods longward of ≈300 days. The low planet

fraction at intermediate orbital periods has been noted pre-
viously. Jones et al. (2003) and Udry et al. (2003) both pointed
out that there is a deficit of gas giants at intermediate
periods, P ≈ 10–100 days.

We have focused on the period distribution for P <
2000 days, but Figure 9 shows that there are many candidate
planets with orbital periods P > 2000 days. In our analysis,
we have assumed that the minimum mass and orbital period
of detected companions are well determined. However, for
orbital periods longer that the time baseline of the data, this
is not the case: there exists a family of best-fitting solutions with
a range of allowed orbital periods, masses, and eccentricities
(see, e.g., Ford 2005; Wright et al. 2007). To constrain the
distribution at long orbital periods requires taking into account
the distributions of orbital parameters allowed by the data for
each star. For now, we extrapolate the period distribution deter-
mined for P < 2000 days to predict the occurrence rate of
long-period orbits assuming that either the flat distribution or
the power law∝ P β holds for longer orbital periods. The results
are given in Table 2. For example, if the distribution is flat in
logP beyond 2000 days, we expect that 17% of solar type stars
harbor a gas giant (Saturn mass and up) within 20 AU. In the
power-law case, the fractions are larger, but not substantially
larger because of the small value of β ¼ 0:26. These extrapola-
tions are consistent with the number of candidates we find at
long orbital periods. If we sum the confirmed planets and can-
didates at long periods, taking the completeness corrections into
account, and assuming that the fitted orbital periods are the
correct ones, we find that 18% of stars have a planet or candi-

FIG. 12.—Same as Figure 11, but now for short orbital periods P < 30 days,
and for massesMP sin i > 0:1 MJ. All detections correspond to announced pla-
nets in this period and mass range.

FIG. 11.—Distribution of orbital periods for planets with periods<2000 days
and massMp sin i > 0:3 MJ. In the lower panel, the dotted histogram shows the
number of detections in each bin, including announced and candidate detections;
the solid histogram shows this number corrected for completeness. Error bars
indicate

ffiffiffiffiffi
N

p
for each bin. The upper panel shows the cumulative percentage of

stars with a planet with orbital period smaller than a given value.
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date within 10 AU. This is the same fraction as our extrapola-
tions suggest for orbital separations less than 20 AU. However,
the uncertainties in orbital parameters need to be taken into
account before we can use the long-period candidates to learn
about the period distribution at long orbital periods.

3.3.3. The Mass Function of Planets

The MP sin i distribution of planets with MP sin i > 0:3MJ

and P < 2000 days is shown in Figure 13. As we have
discussed, a power-law fit to the mass function gives
dN=d lnM ∝ Mα, with α ¼ �0:31� 0:2, so that the distribu-
tion in lnM is approximately flat, but slowly rising to lower
masses. Our value for α agrees with the dN=dM ∝ M�1:1

found by Butler et al. (2006b) by fitting the mass function of
planets detected in the combined Keck, Lick, and AAT surveys
(see also Jorissen et al. 2001). The cumulative distribution in the
upper panel of Figure 13 (which shows the fraction of stars with
a planet more massive than a given mass) shows a correspond-
ing close to linear increase to lower masses. The absence of a
turnover in the cumulative distribution at low masses shows that
our results are consistent with the mass function remaining
approximately flat in lnM to the lowest masses with good de-
tectability.

An important question is whether the mass function is depen-
dent on orbital period. In Figures 14 and 15, we show the mass
distributions in three different period ranges: periods less than
10 days, between 10 days and 1 year, and greater than 1 year. In

the context of theoretical models for planet formation and
migration, these ranges correspond to planets that have under-
gone different amounts of migration (e.g., Ida & Lin 2004a). For
orbital periods less than a year, we give the distribution down to
0:1 MJ, but for longer orbital periods where detectability is not
as good, we restrict the mass range to >0:3 MJ. We detect no
close in planets with M > 2 MJ. This lack of close, massive
planets has been noted before, and is significant: Figure 9 shows
that the survey is complete in that region of the mass-period
plane. At the longest orbital periods, there are almost as many
detections in the mass range 0:3 < MP sin i < 1 (half a decade)
as there are in the range 1 < MP sin i < 10 (a full decade),
suggesting a steeper fall-off with mass than the overall mass
distribution. However, this depends on future confirmation of
the candidates with additional observations, and depends on
the completeness corrections, which are significant in the
lowest-mass bin.

Ida & Lin (2004a) predict a mass-orbital period “desert” at
low masses and intermediate orbital periods. Our data show no

FIG. 13.—Distribution of Mp sin i for planets with P < 2000 days and
MP sin i > 0:3 MJ. In the lower panel, the dotted histogram shows the number
of detections in each bin; the solid histogram shows the number corrected for
completeness. The cumulative distribution is shown in the upper panel.

FIG. 14.—Histogram of Mp sin i for planets in different period ranges. The
dotted histogram shows the number of detections in each bin; the solid histo-
gram shows the number corrected for completeness.
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evidence for a drop in the planet occurrence rate at low masses,
as can be seen in the central panel of Figure 14, although as
Figure 9 shows, we are not able to address the distribution
for masses ≲0:1� 0:2 MJ in this period range because of
selection effects. In their study of the mass-period distribution,
Udry et al. (2003) found evidence for a deficiency of planets
with MP sin i < 0:75 MJ at orbital periods ≳100 days. They
simulated the detectability of planets in that region, and con-
cluded that detections would have been made if the mass
distribution of planets at P > 100 days was similar to that of
the hot Jupiters. Interestingly, we find Saturn mass candidates
at periods longer than 1000 days, but not in the range 100–1000
days. However, the small number of detections in that region of
the mass-period plane and the fact that the completeness correc-
tions are significant there mean that we cannot come to any de-
finite conclusions.

Fitting a uniform distribution in logM to the distributions
in Figure 14, we find a fraction per decade of dN=d log10 M ¼
1:8� 0:6% for P < 10 days, 1:9� 0:5% for 10 days < P <
1 year, and 3:9� 0:9% for 1 year < P < 2000 days. It is inter-
esting to extrapolate this distribution to lower masses. For

example, at short periods P < 10 days, we expect 3.1% of stars
to have a planet more massive than 10 M⊕, and 47% to have an
Earth mass planet or larger. For periods less than 1 year, extra-
polation gives 7.4% of stars with MP > 10 M⊕, and 11%
with MP > 1 M⊕.

3.3.4. Comparison with Previous Work

Our results for the fraction of stars with planets and the mass
and orbital period distributions are generally consistent with
previous determinations. Marcy et al. (2005a) estimated that
12% of stars have a gas giant within 20 AU, based on a flat
extrapolation of the orbital period distribution of the detected
planets in the combined Lick, Keck, and Anglo-Australian sur-
veys. If we take announced planets only without completeness
corrections, we find that the fraction of stars with a planet per
decade is 4:8� 1:0%, which extrapolates to 13� 2:5% within
20 AU in good agreement with Marcy et al. (2005a).

Tabachnik & Tremaine (2002) fit the mass and
period distributions with a double power law, dN ∝
MαP βd lnMd lnP , accounting for selection effects by estimat-
ing the detection thresholds for each of the Doppler surveys.
They obtained α ¼ �0:11� 0:1, which agrees with our value
α ¼ �0:31� 0:2, and β ¼ 0:27� 0:06, which agrees with our
β ¼ 0:26� 0:1. Our error bars are larger than those of Tabach-
nik & Tremaine (2002) because in their work they included
several surveys, and so have a larger total number of stars in
their sample (their results for the Keck survey alone have similar
error bars to our results). Extrapolating, Tabachnik & Tremaine
(2002) found that 4% of solar type stars have planets with 1MJ

< M < 10 MJ and 2 days < P < 10 year. Our results give
6%–9% depending on how the candidate detections are
included (Table 1).

Lineweaver & Grether (2003) also fit a double power law in
mass and period. Their technique was to define an area in which
they estimate all planets have been detected around stars
currently being surveyed and extrapolate to longer periods
and lower masses. For the mass function, they found
α ¼ �0:8� 0:3, i.e., a significant rise in the mass function
at low masses. We do not observe such a rise in Figure 13.
For the period distribution, they found β ¼ 0:7� 0:3, which
again indicates a rise in the planet occurrence rate at long
periods. They estimated that 9% of stars have a planet with
M > 0:3 MJ and P < 13 years. Our extrapolation suggests a
fraction 11% in this mass and period range (see Table 2).

Naef et al. (2005) present an analysis of data for 330 stars
with 18 detected planets from the ELODIE Planet Search pro-
gram. They give the fraction of stars with planets more massive
than 0:5 MJ within three different orbital periods: 0:7� 0:5%
for P < 5 days, 4:0� 1:1% for P < 1500 days, and 7:3�
1:5% for P < 3900 days. For the same mass and period ranges,
we find 0:65� 0:4%, 6:9� 1:2%, and 12� 1:6% (this last
number is 8:6� 1:3% if only announced planets are included).

FIG. 15.—Cumulative distribution of Mp sin i for planets in different period
ranges.
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3.4. Results for M Dwarfs

We now turn to the M dwarfs in the sample. Figure 16 shows
the results of the calculation described in § 3.1 applied to the
110 stars with M < 0:5 M⊙. Having detected 46 planets from
475 F, G, and K stars, we would expect 11 planets in this sample
of M dwarfs if the planet frequency and detectability were the
same. Instead, there are only 2 announced planets: GJ 876,
which is in fact a triple system but our search detects only
the most massive planet at P ¼ 60 days, and GJ 436, a 0:07
MJ planet in an orbit of less than 3 days.

Several recent papers have addressed the apparent paucity of
gas giant planets around M dwarfs. In their paper announcing
the discovery of the Neptune-mass planet orbiting GJ 436,
Butler et al. (2004b) estimated that the planet fraction for M
dwarfs is ≈0:5% for masses ≳1 MJ and periods <3 years,
roughly an order of magnitude lower than around F and G main
sequence stars. Butler et al. (2006a) announced the detection of
a 0:8 MJ planet in an orbit with P ¼ 1890 days days around GJ
849. Including both GJ 876 and GJ 849, they estimate a planet
fraction 2=114 ¼ 1:8� 1:2% for planet masses ≳0:4 MJ and
periods a < 2:5 AU. In the same range of α but with a larger
mass limit MP sin i > 0:8 MJ, Johnson et al. (2007) find that
this fraction is 1:8� 1:0% for stars in the mass range
0:1–0:7 M⊙. Endl et al. (2006) give a limit on the fraction
of M dwarfs with planets of < 1:27% at the 1 σ confidence
level. This result is less constraining, since they estimate that

their survey of 90 M dwarfs is 95% complete for MP sin i >
3:5 MJ and a < 0:7 AU, and Table 1 shows that we find a
planet fraction of≈1% for planets in this mass and period range
around FGK stars. These observational constraints agree with
predictions of core accretion models for planet formation, which
find that Jupiter-mass planets should be rare around M dwarfs,
with the mass function of planets shifted toward lower masses
(Laughlin et al. 2004; Ida & Lin 2005; Kennedy & Kenyon
2008; although Kornet & Wolf 2006 predict a greater incidence
of gas giants at lower stellar masses if the protoplanetary disk
parameters do not change with stellar mass).

With so few detections in our sample we obviously cannot
say anything about the mass-period distribution. However, we
can address the possible role of selection effects and constrain
the relative fractions of stars with planets around M dwarfs
compared to FGK stars. We again take a maximum likelihood
approach. We assume that the mass-period distribution for M
dwarfs is the same power-law distribution that we fit for the
larger sample of FGK stars, dN ¼ CMαP βd lnMd lnP ,
with α ¼ �0:31 and β ¼ 0:26, but with a different normaliza-
tion constant C. (The mass-period distribution is likely
different for M dwarfs than FGK stars, but this is the simplest
assumption given the available data). We then calculate the
likelihood for the ratio of normalization constants
r ¼ CðM★ < 0:5M⊙Þ=CðM★ > 0:5M⊙Þ. This is shown in
Figure 17. We use the same mass range 0:3–10 MJ, and period
range 2–2000 days as in § 3.1. The best-fitting value is
r ¼ 0:095, indicating that M dwarfs are 10 times less likely
to harbor a gas giant within 2000 days. The 95.4% (2 σ) upper
limit on the relative planet fraction is 0.51. Using the normal-
ization from the power-law model (which for the best-fitting
model has 10.5% of stars with planets for FGK stars), we find
the best-fitting M dwarf planet fraction to be 1.0%, with a 2 σ
upper limit of 5.4%.

The shape of the curve in Figure 17 is straightforward. In the
period range P < 2000 days and mass range 0:3–10MJ, there
are 35 detections out of 475 FGK stars, a fraction of 7.4%. If the
planet fraction around M dwarfs is r times the planet fraction
around FGK dwarfs, we therefore expect to find 8:1r detections
amongst the 110 M dwarfs. The probability of detecting 1 planet
is then ð8:1rÞ expð�8:1rÞ from the Poisson distribution. Using
Bayes’s theorem (e.g., Sivia 1996), we can view this expression
as the probability distribution function for r given the measured
number of detections. We plot this as the dotted curve in
Figure 17. The fact that the dotted curve lies to the right of
the maximum likelihood result indicates that the selection ef-
fects favor detection of gas giants around M dwarfs by about
25% (if we increase the expected number by 25%, from 8:1r
to 10r, the solid and dotted curves lie almost on top of each
other). Although the Doppler errors and upper limits on velocity
amplitude are generally greater for the M dwarfs, the lower stel-
lar mass means that a gas giant planet intrinsically gives a larger

FIG. 16.—Same as Figure 9, but showing only the detections for the 110 stars
with M★ < 0:5 M⊙. The blue curves show the upper limits corresponding
to this mass range. The dotted lines show velocity amplitudes of 3, 10, and
30 ms�1 for a 0:3 M⊙ star. See the electronic edition of the PASP for a color
version of this figure.
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velocity signal. The net effect is a slightly larger detectability of
gas giants for M dwarfs.

This result shows that the deficit of gas giants around M
dwarfs is statistically significant in our sample, and is not
due to selection effects against finding companions to M dwarfs.
However, the best-fitting value of the ratio r is subject to small
number statistics (Fig. 17). An illustration of this is the recently
announced companion to GJ 849 (Butler et al. 2006a), which is
one of the long-period candidates shown in Figure 16. The data
we analyze here do not include recent observations of this star
taken in 2005 and 2006 that show the closure of the orbit. As a
result, our search algorithm finds an orbital period of 4400 days,
more than twice as long as the true orbital period of 1890 days.
Therefore GJ 849 is actually just inside the region considered
above (P < 2000 days), suggesting that the best current
estimate for the M dwarf planet fraction is ≈2% (Butler et al.
2006a) within 2000 days. The dashed curve in Figure 17 shows
the result if we include the companion to GJ 849 in our calcula-
tion (by correcting the orbital period to the announced value by
hand). Again, our result is well approximated by a Poisson
distribution (but this time with two detections) if the expected
number is increased by 25%. The best-fit relative fraction is
r ¼ 0:19, which corresponds to 2.0% of M dwarfs with gas

giants within 2000 days. The 2 σ confidence limit on r
is r < 0:65.

4. SUMMARY AND CONCLUSIONS

We have carried out a systematic search for planets using
precise radial velocity measurements of 585 stars from the Keck
Planet Search. The number, duration, and frequency of obser-
vations and typical Doppler measurement errors are summar-
ized in Figures 2 and 3. This analysis provides a snapshot of
the Keck Planet Search at the time of the HIRES spectrometer
upgrade in 2004 August.

We systematically searched for planets by calculating the
false-alarm probability associated with Keplerian orbit fits to
the data for each star (C04; Marcy et al. 2005b; O’Toole et al.
2007). This method allows the detection threshold for each
star to be understood in terms of the number and duration of
the observations, and the underlying “noise” from measurement
errors, intrinsic stellar jitter, or additional low-mass planets. The
results are summarized in Figure 5. We find that all planets
with orbital periods P < 2000 days, velocity amplitudes
K > 20 m s�1, and eccentricities e≲ 0:6 have been an-
nounced. For stars without a detection, upper limits (Fig. 7)
are typically 10 m s�1 for orbital periods less than the duration
of the observations, and increase ∝ P 2 for longer periods (see
C04 for a discussion of the period dependence of the detection
threshold). The upper limits constrain the presence of additional
planets, and allow us to study the mass and orbital period
distribution. In § 3, we described a method to calculate the com-
pleteness corrections to the mass-orbital period distribution at
low masses and long orbital periods. Our method is a general-
ization of the iterative method of Avni et al. (1980) to two
dimensions. In the Appendix, we show that our approach
corresponds to a maximum likelihood method with simple
approximations for the likelihood functions of detections and
nondetections.

The resulting completeness corrections for the 475 F, G and
K stars in the sample are summarized in Figure 9, and Table 1
gives the fraction of stars with a planet as a function of mini-
mum mass and orbital period (see § 2.1 for details of the stellar
sample including the distribution of spectral types). For masses
> 0:3 MJ, the detectability is good for periods as large as 2000
days. A power-law fit to the data in this range gives a mass-
period distribution dN ¼ CMαP βd lnMd lnP with α ¼
�0:31� 0:2 and β ¼ 0:26� 0:1. The normalization constant
C is such that the fraction of FGK stars with a planet in the
mass range 0:3� 10 MJ and period range 2–2000 days is
10.5%. In units corresponding to measuring planet masses in
Jupiter masses and orbital periods in days, the value of the nor-
malization is C ¼ 1:04 × 10�3.

Table 2 shows the expected planet fractions obtained by ex-
trapolating our results out to long periods. We estimate that
17%–19% of stars have a gas giant planet within 20 AU.
Extrapolating to low masses gives 11% of stars with an Earth

FIG. 17.—Relative fraction of stars with a planet for stars with M★ < 0:5

M⊙ compared with those withM★ > 0:5 M⊙. For each set of stars, we assume
the mass-period distribution is dN ¼ CMαP βd lnMd lnP with α ¼ �0:31

and β ¼ 0:26 (the best-fit values for the whole sample; see Fig. 10) and plot
the likelihood of the ratio of the normalization factors r. The dotted curve shows
the expected distribution if selection effects are not important, i.e., based on
Poisson counting statistics only. The dashed curve shows the result if we include
the recently announced companion to GJ 849.
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mass planet or larger within 1 AU. This extrapolation is uncer-
tain, since it takes the distribution derived for gas giant planets
into the mass range of rocky planets, for which the formation
and migration history is presumably quite different (e.g., Ida &
Lin 2004a). A similar uncertainty applies for our extrapolation
to long orbital periods also, because, for example, the relevant
timescales for planet formation grow longer at larger orbital
radii, although outward migration can populate long-period or-
bits (Veras & Armitage 2004; Martin et al. 2007).

We find several interesting features in the mass-period dis-
tribution. Massive planets (≳2 MJ) are rare at short orbital per-
iods, as has been noted previously. There is no significant
evidence for a lower cutoff in the mass function at intermediate
orbital periods, down to planet masses of 0:1–0:2 MJ. There-
fore we do not see any evidence yet for the planet desert pro-
posed by Ida & Lin (2004a). For orbital periods longer than a
year, there are almost as many detections in the mass range
0:3 < MP sin i < 1 (half a decade) as there are in the range 1 <
MP sin i < 10 (a full decade), suggesting a steeper fall-off with
mass than the overall mass distribution at long periods. How-
ever, this result depends on several candidate detections with
≲MJ in this period range that await confirmation. A depen-
dence of the mass function on orbital period might indicate dif-
ferences in migration mechanisms for different planet masses
(Armitage 2007). The orbital period distribution shows an in-
crease in the occurrence rate of gas giants of a factor of 5 beyond
P ≈ 300 days. Theoretical models of planet formation gener-
ally predict a smooth increase in the incidence of gas giants
at longer orbital periods due to the increasing rate of migration
as a planet moves inwards through the protoplanetary disk (e.g.,
Figure 1 of Ida & Lin 2004b; Figure 5 of Armitage 2007). The
sharp increase in the period distribution at P ≈ 300 days shown
in Figure 11 may reflect some particular radial structure in the
protoplanetary disk. Ida & Lin (2008b) propose an explanation
for this upturn based on a surface density enhancement at the ice
line due to a local pressure maximum in the disk. Detailed com-
parisons between these various models and our results would
constrain parameters such as the ratio of migration to disk de-
pletion timescales (e.g., Ida & Lin 2004a; Armitage 2007).

Because of the small number of detections in the sample of
110 M dwarfs, we are not able to constrain the mass-period
distribution for these stars. However, by assuming that the
mass-period distribution is the same for M dwarfs as for more
massive stars, we constrained the occurrence rate of planets re-
lative to the FGK stars, taking into account possible differences
in detectability between the two groups. Our results show that
the occurrence rate of gas giants within 2000 days is r ¼ 3–10
times smaller for M dwarfs than FGK dwarfs (Fig. 17), with a
two σ limit r > 1:5. A lower incidence of Jupiter-mass planets
around M dwarfs is predicted by core accretion models for pla-
net formation (Laughlin, Bodenheimer, & Adams 2004; Ida &
Lin 2005; Kornet & Wolf 2006; Kennedy & Kenyon 2008).
Comparing with Figure 8 of Ida & Lin (2005), we find that both

the absolute and relative occurrence rates that we derive for
Jupiter-mass planets agree best with their standard model, in
which disk mass is an increasing function of stellar mass
(∝ M2

★). Kennedy & Kenyon (2008) scale their disk mass
∝ M★, but include a detailed calculation of the position of
the snow line. Their Figure 7 shows that the probability of having
at least one giant planet is 6 times lower for 0:4 M⊙ star than a
1 M⊙ star, within the range found in this paper.We can rule out a
larger gas-giant planet fraction for M dwarfs than for solar mass
stars, as found by Kornet &Wolf (2006) for models in which the
disk parameters were independent of stellar mass.

Our calculations can be improved in several respects. First,
we neglected eccentricity when accounting for nondetections.
This is reasonable for most values of e, since eccentricity
has a large effect on detectability for e≳ 0:6 (Endl et al.
2002; C04). However, the population of high eccentricity
planets (e > 0:6) is not well constrained. In addition, there
are more subtle selection effects involving eccentricity. For ex-
ample, Cumming (2004) showed that nonzero eccentricity
enhances detectability for orbital periods longer than the time
baseline of the data, introducing a bias in the longest period or-
bits toward systems with e > 0. Further analysis is required to
study the eccentricity distribution and the orbital period distri-
bution of long-period planets. Our data potentially allow us
constrain the distribution of orbital periods beyond the 8 year
time baseline of the observations, but this will require averaging
over the range of possible eccentricities for those outer planets.
We did not include multiple planet systems. This introduces
some uncertainty in our derived distributions, since our techni-
que identifies only a single planet. In a multiple system, this is
the planet with the largest velocity amplitude, so that the dis-
tributions derived here are for the most detectable planet in a
system. Finally, our method for including the upper limits
involves dividing the data into either detections or nondetec-
tions, which depends on the choice of detection threshold.
A better approach would be to calculate the probabilities di-
rectly and include them in the analysis (see eq. [A1]). Techni-
ques to evaluate the relevant Bayesian integrals over the
multidimensional parameter space have been discussed in the
literature (Ford 2006; Ford & Gregory 2007; Gregory 2007a,
2007b). This approach will allow orbital eccentricity, the uncer-
tainty in parameters associated with long orbital periods, and
multiple companions to be included.
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APPENDIX A.

CORRECTING FOR THE UPPER LIMITS: A MAXIMUM LIKELIHOOD APPROACH

A1. Likelihood Function for Detections and
Nondetections

In this Appendix, we derive equation (9) for the complete-
ness corrections starting with a maximum likelihood approach.
We assume that the fraction of stars with a planet is FP , with
a mass-period distribution fðM;P Þ normalized so thatR
d lnM

R
d lnPfðM;P Þ ¼ FP . The likelihood of the data

for star i is

Li ¼ ð1� FP Þqi þ
Z

d lnM
Z

d lnPfðM;P ÞpiðM;P Þ;
(A1)

where piðM;P Þ is the probability of the data given a planet of
massM and period P , and qi is the probability of the data given
that no planet is present (see eqs. [10] and [11] of C04). To
determine fðM;P Þ, we maximize the total likelihood, which
is the product over all stars of the individual likelihoods,
L ¼ Q

iLi.
Note that equation (A1) for the likelihood assumes that each

star has either no planet or one planet, i.e. that the presence of a
planet with mass M and period P excludes the possibility of
additional planets with other masses and periods. This is con-
sistent with our search algorithm described in § 2.3, which fits a
single Keplerian orbit, and for multiple planet systems identifies
only the planet with the largest radial velocity amplitude. The
distribution fðM;P Þ that we derive should therefore be consid-
ered as the mass-period distribution of the most detectable pla-
net in a system. This is a close approximation to the true
distribution because the number of multiple planet systems is
≈10% of the total (e.g., Marcy et al. 2005a). To include the
possibility of multiple planets, the likelihood function can be
derived by considering each bin in mass-period space as an in-
dependent Poisson trial (e.g., as Tabachnik & Tremaine 2002),
however this reduces to equation (A1) when the expected num-
ber of planets per star is ≪1 (compare eq. [10] of Tabachnik &
Tremaine 2002 with eq. [A5] below; see also Appendix B of
Tokovinin et al. 2006 for a clear discussion).

In this paper, rather than evaluate pi and qi directly, we have
classified each data set as either a detection or a nondetection. In
the case of a detection, we make the approximation

qi ≈ 0; piðM;P Þ≈MiPiδðM �MiÞδðP � PiÞ; (A2)

because we expect the likelihood to be strongly peaked near the
best-fit mass and period for a strong detection, with a vanishing
probability that no planet is present. We write the mass, period,
and velocity amplitude of detection i as Mi, Pi, and Ki. For a
nondetection, we expect

piðM;P Þ ∝
�
qi K < Kup;i

0 K > Kup;i
; (A3)

because we are able to rule out velocity amplitudes above the
upper limit Kup;i but not below it, and it remains possible that
the star has no planet. Substituting these approximations into
equation (A1) gives

Li ∝
�
fðMi; P iÞ detection
1� R

K>Kup;i
d lnMd lnPfðM;P Þ non-detection ;

(A4)

where we have used the normalizationR
d lnM

R
d lnPfðM;P Þ ¼ FP . The total likelihood is

L ¼
YNd

i¼1

fðMi; P iÞ
YN⋆�Nd

j¼1

×

�
1�

Z
K>Kup;j

d lnMd lnPfðM;P Þ
�
; (A5)

where Nd is the number of detections out of N★ stars. Equa-
tion (A5) is a two-dimensional generalization of the likelihood
function of Avni et al. (1980).

As a quick aside to gain some intuition, let us assume that
fðM;P Þ is a constant independent of M and P . In addition,
assume that Kup is the same for each star with a nondetection.
Then,

L ∝ FNd

P ð1� kFP ÞN★�Nd ; (A6)

where k is the fraction of planets ruled out by the upper limit. To
find the best-fit value of FP , we maximize L by setting
dL=dFP ¼ 0. This gives
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FP ¼ Nd

N★
k�1: (A7)

If the upper limit rules out the whole mass-period plane (in other
words we can say that a star without a detection definitely does
not have a planet) then k ¼ 1 and FP ¼ Nd=N★. However, if
k < 1, then we can exclude only a fraction k of planets, and our
estimate of FP must therefore be larger. For example, if a third
of planets lie above the upper limit (k ¼ 1=3), we conclude that
there are 3 times as many planets as we actually detect,
FP ¼ 3Nd=N★.

A2. Maximizing the Likelihood:
Nonparametric Approach

To proceed further, one could divide the mass-period plane
into a grid and solve for fðM;P Þ in each grid cell (a nonpara-
metric approach), or assume a parametric form for fðM;P Þ and
find the parameters that maximize the likelihood. We follow
Avni et al. (1980 § Vb) who discretize f at the locations of
the detected planets, i.e., write

R
d lnMd lnPfðM;P Þ ¼P

fi; where we use the shorthand fi ¼ fðMi; P iÞ, the sum
is over the detections, and the normalization is

P
fi ¼ FP .

This method gives fðM;P Þ in a nonparametric way, but with-
out binning the distribution. The total log likelihood is

logL ¼
X
i

log fi þ
X
j

log

�
1�

X
i;Ki>Kup;j

fi

�
; (A8)

where the sums with index i are over detections and the sum
with index j is over all nondetections.

We can now go ahead and maximize Lwith respect to theNd

values of fi. We set ∂L=∂fi ¼ 0, which gives

fi ¼
� X
j;Kup;j<Ki

1

ZðKup;jÞ
��1

; (A9)

where the sum with index j is over all nondetections with upper
limits that exclude a companion with the amplitude of detection
i, and we define

ZðKupÞ ¼ 1�
X

i;Ki>Kup

fi; (A10)

which has a sum over all detections that have velocity ampli-
tudes larger than the specified upper limit Kup.

Equation (A9)is an equation for fi which can be solved itera-
tively, as in § 3.1. However, we proceed a little further in order
to make connection with the heuristic derivation given in § 3.1.
We write equation (A9) as

1 ¼ fi
X

j;Kup;j<Ki

1

ZðKup;jÞ
(A11)

and then sum both sides over the detections, from i ¼ 1 to
i ¼ Nd. After changing the order of the sums on the right hand
side and simplifying, we find the result

N★ ¼
X
j

1

ZðKup;jÞ
(A12)

where the sum j is over all nondetections. Using this to rewrite
equation (A9), we find

fiN★ ¼ 1þ
X

j;Kup;j>Ki

fi
ZðKup;jÞ

; (A13)

where the sum is over all nondetections j that have upper limits
allowing a companion with the same amplitude as detection i to
be present. Equation (A13)is therefore equivalent to equa-
tion (A9), and with the final definition Ni ¼ N★fi, reduces
to equation (A9)of § 3.1 when solved iteratively.

A3. The Limit of Small Bin Size

One might worry that, by following the distribution fðM;P Þ
only at the location of the detected planets, we are missing those
areas of the mass-period plane in which there are no detections.
In fact, we show now that the converged solution has nonzero
values for f only at the locations of the detected planets. We
start with equation (A5) and divide the mass-period plane into
grid cells, labeled by α so that we write fðM;P Þ averaged over
grid cell α as fðαÞ. The grid cell containing detection i we write
as αi. The likelihood is then given by

logL ¼
X
i

log fðαiÞ þ
X
j

log

�
1�

X
α;KðαÞ>Kup;j

fðαÞ
�
:

(A14)

In the last term, KðαÞ is the velocity amplitude associated with
grid cell α, and so the sum is over only those grid cells that are
constrained by the upper limit j. We assume that the grid cells
are small enough that the entire grid cell is either excluded or
allowed by the upper limit; in practice only a part of the grid cell
may be excluded by the upper limit, but we ignore this here for
clarity. Now, maximizing logL with respect to the set of fðαÞ
by setting ∂L=∂fðαÞ ¼ 0, we find

fðαÞ ¼ NdðαÞ
� X
j;Kup;j>KðαÞ

1

ZðKup;jÞ
��1

; (A15)

where NdðαÞ is the number of detections in grid cell α and
ZðKupÞ ¼ 1�P

KðαÞ>Kup
fðαÞ. Following the same steps as

in our derivation of equation (A13), we rewrite this as an itera-
tive procedure,
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fnþ1 ¼ NdðαÞ
N★

þ
X

j;Kup;j>KðαÞ

fnðαÞ
ZðKup;jÞ

1

N★
; (A16)

which should be compared with equation (A13). Now subtract-
ing fnðαÞ from both sides, we find

fnþ1ðαÞ � fnðαÞ ¼ NdðαÞ
N★

� fnðαÞ
X

j;Kup;j<KðαÞ

1

N★ZðKup;jÞ
;

(A17)

where we use a result analogous to equation (A12). We see that
the converged solution (fnþ1 ¼ fn) is

fðαÞ ¼ NpðαÞ
� X
j;Kup;j<KðαÞ

1

N★ZðKup;jÞ
��1

: (A18)

Therefore, the converged solution has fðαÞ nonzero only in
those grid cells that have detections (NdðαÞ > 0). Taking bins
small enough to contain either one or zero planets, we see that
we need evaluate f only at the locations of the detected planets,
which is our starting point for equation (A18) (see also § V.b of
Avni et al. 1980, who show that a solution of eq. [A5] can be
derived, which is a sum over delta functions evaluated at the
detected points).

A4. Likelihood Function for Power-Law Mass
and Period Distributions

We now derive the likelihood L for an assumed
powerlaw distribution dN ¼ fðM;P Þd lnMd lnP ¼
CMαP βd lnMd lnP , where C is a normalization constant.
This is used in § 3 to derive the best-fitting values of α and
β by maximizing L with respect to these parameters. The cal-
culation here is very similar to Tabachnik & Tremaine (2002)
except for our different form for L (see discussion following
eq. [A1]). The log likelihood is

logL ¼
X
i

ðα logMi þ β logPi þ logCÞ

þ
X
j

log½1� CIjðα; βÞ�; (A19)

where

Ijðα; βÞ ¼
Z
K>Kup;j

d lnMd lnPMαP β: (A20)

Setting ∂L=∂C ¼ 0 gives the relation

Nd ¼
X
j

CIjðα; βÞ
1� CIjðα; βÞ

; (A21)

which can be solved to determine C for given α and β. We cal-
culate the integrals Ijðα; βÞ numerically, taking into account the
variation of the upper limit Kup with orbital period. Following
Tabachnik & Tremaine (2002), after choosing the range of lnP
and lnM we are interested in, we refine it to just cover the range
of periods and masses of the detected planets, as this maximizes
the likelihood.

In § 3.4, we divide the stars into two groups based on their
mass, and, assuming fixed values of α and β, fit separately for
the two normalizations C1 ¼ fC and C2 ¼ C, where f is the
relative planet fraction of group 1 (stellar masses <0:5 M⊙)
compared with group 2 (stellar masses>0:5 M⊙). It is straight-
forward to show that in this case, C and f are determined by
solving

N1 ¼
X
jð1Þ

CfIj
1� CfIj

; N2 ¼
X
jð2Þ

CIj
1� CIj

; (A22)

where jð1Þ or jð2Þ indicates a sum over the nondetections in
group 1 or 2, respectively, and N1 and N2 are the number
of detections in groups 1 and 2.

To get a feel for the solution, it is helpful to solve equa-
tion (A21) for the constant C in the approximation that the in-
tegrals Ij are the same constant for all stars with nondetections.
This gives

fðM;P Þd lnMd lnP ¼
�
Nd

N★

�
MαP βd lnMd lnPR

K>Kup
MαP βd lnMd lnP

:

(A23)

The last term counts the number of constraining observations,
analogous to the factor k in equation (A7). In the case where we
divide the stars into two groups, the ratio of normalizations that
maximizes the likelihood is

C1

C2

¼ N1=N★;1

N2=N★;2

I2
I1

: (A24)

The factor I2=I1 accounts for the relative detectability of planets
in group 1 or 2. If detectability is the same for the two groups of
stars, I1 ¼ I2, the estimate for C1=C2 corresponds to simply
counting the relative fractions of detections.
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